Mun, S. et al. Proteomics approach for the discovery of rheumatoid arthritis biomarkers using mass spectrometry. Int. J. Mol. Sci. 20 (18), 4368 (2019).
Google ScholarÂ
Radu, A. F. & Bungau, S. G. Management of rheumatoid arthritis: an overview. Cells 10 (11), 2857 (2021).
Google ScholarÂ
Padyukov, L. Genetics of rheumatoid arthritis. In Seminars in immunopathology. 44, 47–62 (2022).
Mukhtar, M. et al. Vitamin D Receptor Gene Polymorphism: an Important Predictor of Arthritis Development (BioMed research international, 2019).
Toledano, E. et al. A meta-analysis of mortality in rheumatic diseases. Reumatologia Clin. 8 (6), 334–341 (2012).
Google ScholarÂ
Curtis, J. R. & Singh, J. A. Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clin. Ther. 33 (6), 679–707. https://doi.org/10.1016/j.clinthera.2011.05.044 (2011).
Google ScholarÂ
Zhang, J. et al. Impact of biologic agents with and without concomitant methotrexate and at reduced doses in older rheumatoid arthritis patients. Arthritis Care Res. (Hoboken). 67 (5), 624–632. https://doi.org/10.1002/acr.22510 (2015).
Google ScholarÂ
Singh, P., Kumar, A. & Chandra, P. Rheumatoid factor versus anti – cyclic citrullinated peptide antibody as screening tool for rheumatoid arthritis in an ophthalmic clinic. Indian J. Ophthalmol. 68 (1), 236–238. https://doi.org/10.4103/ijo.IJO_526_19 (2020).
Google ScholarÂ
Hassan Sr, W. M. & Oxidative, D. N. A. Damage and zinc status in patients with rheumatoid arthritis in Duhok Iraq. Cureus 16(1), 1–7 (2024).
Beck, C., Robert, I., Reina-San-Martin, B., Schreiber, V. & Dantzer, F. Poly (ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp. Cell. Res. 329 (1), 18–25 (2014).
Google ScholarÂ
GarcÃa, S. & Conde, C. The role of Poly (ADP-ribose) Polymerase-1 in rheumatoid arthritis. Mediators Inflamm. 2015 (1), 837250 (2015).
Ghodke-Puranik, Y. & Niewold, T. B. Immunogenetics of systemic lupus erythematosus: A comprehensive review. J. Autoimmun. 64, 125–136. https://doi.org/10.1016/j.jaut.2015.08.004 (2015).
Google ScholarÂ
Crow, Y. J. & Rehwinkel, J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 18, 130–136 (2009).
Google ScholarÂ
Wang, Y., Luo, W. & Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair. 81, 102651 (2019).
Google ScholarÂ
Yamanishi, Y. et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am. J. Pathol. 160 (1), 123–130 (2002).
Google ScholarÂ
Cheng, Q. & Chen, J. Mechanism of p53 stabilization by ATM after DNA damage. Cell. Cycle. 9 (3), 472–478 (2010).
Google ScholarÂ
Dedmon, L. E. The genetics of rheumatoid arthritis. J. Rheumatol. 59 (10), 2661–2670 (2020).
Google ScholarÂ
Ling, D., Salvaterra, P. M. & Robust RT-qPCR data normalization: validation and selection of internal reference genes during post-experimental data analysis. PloS one, 6(3), e17762. (2011).
Debreova, M. et al. Rheumatoid arthritis: from synovium biology to cell-based therapy. Cytotherapy 24 (4), 365–375 (2022).
Google ScholarÂ
Souliotis, V. L., Vlachogiannis, N. I., Pappa, M., Argyriou, A. & Sfikakis, P. P. DNA damage accumulation, defective chromatin organization and deficient DNA repair capacity in patients with rheumatoid arthritis. Clin. Immunol. 203, 28–36 (2019).
Google ScholarÂ
Arya, R. & Bassing, C. H. V (D) J recombination exploits DNA damage responses to promote immunity. Trends Genet. 33 (7), 479–489 (2017).
Google ScholarÂ
Fang, Q., Zhou, C. & Nandakumar, K. S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm. 2020 (1) 3830212 (2020).
Taghadosi, M., Adib, M., Jamshidi, A., Mahmoudi, M. & Farhadi, E. The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol. Res. 69 (3), 225–238 (2021).
Google ScholarÂ
Shao, L. DNA damage response signals transduce stress from rheumatoid arthritis risk factors into T cell dysfunction. Front. Immunol. 9, 415589 (2018).
Google ScholarÂ
Hua, R. et al. Association between the PARP1 Val762Ala polymorphism and cancer risk: evidence from 43 studies. PLoS One 9(1), e87057 (2014).
Bashir, K., Sarwar, R., Saeed, S., Mahjabeen, I. & Kayani, M. A. Interaction among susceptibility genotypes of PARP1 SNPs in thyroid carcinoma. PLoS One 13(9), e0199007 (2018).
Zhang, Q. et al. PARP-1 Val762Ala polymorphism, CagA + H. Pylori infection and risk for gastric cancer in Han Chinese population. Mol. Biol. Rep. 36, 1461–1467 (2009).
Google ScholarÂ
Wang, X. B. et al. PARP-1 variant Rs1136410 confers protection against coronary artery disease in a Chinese Han population: a two-stage case-control study involving 5643 subjects. Front. Physiol. 8, 916 (2017).
Google ScholarÂ
Hur, J. W. et al. Poly (ADP-ribose) polymerase (PARP) polymorphisms associated with nephritis and arthritis in systemic lupus erythematosus. Rheumatol 45 (6), 711–717 (2006).
Google ScholarÂ
Onaran, İ. et al. The Val762Ala Polymorphism in the Poly (ADP-ribose) Polymerase-1 gene is not associated with susceptibility in Turkish rheumatoid arthritis patients. Rheumatol. Int. 29, 797–800 (2009).
Google ScholarÂ
Kauppinen, T. M. Multiple roles for Poly (ADP-ribose) Polymerase-1 in neurological disease. Neurochem Int. 50 (7–8), 954–958 (2007).
Google ScholarÂ
Koc, A. et al. Association of three SNPs in the PARP-1 gene with hashimoto’s thyroiditis. Hum. Genome Var. 1 (1), 1–6 (2014).
Google ScholarÂ
Qian, D. et al. A pleiotropic ATM variant (rs1800057 C > G) is associated with risk of multiple cancers. Carcinogenesis 43 (1), 60–66 (2022).
Google ScholarÂ
Mehmood, A., Kayani, M. A., Ahmed, M. W., Nisar, A. & Mahjabeen, I. Association between single nucleotide polymorphisms of DNA damage response pathway genes and increased risk in breast cancer. Future Oncol. 16 (26), 1977–1995 (2020).
Google ScholarÂ
Navinchandra, S. A. et al. ATM polymorphisms and their relationship to radiation toxicity in breast Cancer patients. Braz Appl. Sci. Rev. 4 (5), 3123–3148 (2020).
Google ScholarÂ
Bensouilah, F. Z. et al. Association of single nucleotide polymorphisms with renal cell carcinoma in Algerian population. AFR. J. UROL. 26, 1–8 (2020).
Google ScholarÂ
Gielecińska, A., Kciuk, M., Kołat, D., Kruczkowska, W. & Kontek, R. Polymorphisms of DNA repair genes in thyroid Cancer. Int J. Mol. Sci 25(11), 5995 (2024).
Mensah, K. A. et al. Impaired ATM activation in B cells is associated with bone resorption in rheumatoid arthritis. Sci. Transl Med. 11 (519), 4626 (2019).
Google ScholarÂ
Xavier, C. B. et al. Suspected germline TP53 variants and clonal hematopoiesis of indeterminate potential: lessons learned from a molecular tumor board. Oncologist 28 (7), 624–627 (2023).
Google ScholarÂ
Szeliga, M., Bogacińska-Karaś, M., Kuźmicz, K., Rola, R. & Albrecht, J. Downregulation of GLS2 in glioblastoma cells is related to DNA hypermethylation but not to the p53 status. Mol. Carcinog. 55 (9), 1309–1316 (2016).
Google ScholarÂ
Fortuno, C. et al. A quantitative model to predict pathogenicity of missense variants in the TP53 gene. Hum. Mutat. 40 (6), 788–800 (2019).
Google ScholarÂ
Song, R. et al. Clinical features of Li-Fraumeni syndrome in Korea. Cancer Res. Treat. 56 (1), 334 (2024).
Google ScholarÂ
Mousavi, M. J. et al. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. Auto Immun. Highlights. 12, 1–13 (2021).
Cooks, T., Harris, C. C. & Oren, M. Caught in the cross fire: p53 in inflammation. Carcinogenesis 35 (8), 1680–1690 (2014).
Google ScholarÂ
Nezos, A. et al. TREX1 variants in sjogren’s syndrome related lymphomagenesis. Cytokine 132, 154781 (2020).
Google ScholarÂ
Chauvin, S. D. et al. Inherited C-terminal TREX1 variants disrupt homology-directed repair to cause senescence and DNA damage phenotypes in drosophila, mice, and humans. Nat. Commun. 15 (1), 1–23 (2024).
Google ScholarÂ
Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12 (4), 270–279 (2011).
Google ScholarÂ
Queiroz, M. A. F. TREX1 531Â C/T polymorphism and autoantibodies associated with the immune status of HIV-1-infected individuals. Int. J. Mol. Sci. 24 (11), 9660 (2023).
Google ScholarÂ
Castañeda-Delgado, J. E. et al. Type I interferon gene response is increased in early and established rheumatoid arthritis and correlates with autoantibody production. Front. Immunol. 8, 285 (2017).
Google ScholarÂ
Neidhart, M., Karouzakis, E., Schumann, G. G., Gay, R. E. & Gay, S. Trex-1 deficiency in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 62 (9), 2673–2679 (2010).
Google ScholarÂ
Pazzaglia, S. & Pioli, C. Multifaceted role of PARP-1 in DNA repair and inflammation: pathological and therapeutic implications in cancer and non-cancer diseases. Cells 9 (1), 41 (2019).
Google ScholarÂ
Gil-Kulik, P. et al. Different regulation of PARP1, PARP2, PARP3 and TRPM2 genes expression in acute myeloid leukemia cells. BMC cancer. 20, 1–9 (2020).
Google ScholarÂ
Kupczyk, P. et al. PARP1 as a marker of an aggressive clinical phenotype in cutaneous melanoma—a clinical and an in vitro study. Cells 10 (2), 286 (2021).
Google ScholarÂ
Li, G. The rheumatoid arthritis risk variant CCR6DNP regulates CCR6 via PARP-1. PLoS Genet. 12(9), e1006292 (2016).
Rondeau, S. ATM has a major role in the double-strand break repair pathway dysregulation in sporadic breast carcinomas and is an independent prognostic marker at both mRNA and protein levels. Br. J. Cancer. 112 (6), 1059–1066 (2015).
Google ScholarÂ
Xiong, H. & Zhang, J. Expression and clinical significance of ATM and PUMA gene in patients with colorectal cancer. Oncol. Lett. 14 (6), 7825–7828 (2017).
Google ScholarÂ
Pádua, J. D. B. mRNA expression and methylation of the RAD51, ATM, ATR, BRCA1, and BRCA2 genes in gastric adenocarcinoma. Biomark 19, 11772719231225206 (2024).
Shao, L. et al. Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. J. Exp. Med. 206 (6), 1435–1449 (2009).
Google ScholarÂ
Peng, C. Y., Hu, L., Wu, Z. J., Wang, J. & Cai, R. L. Effects of moxibustion on p53, SLC7A11, and GPX4 expression in synovial tissues of rats with adjuvant arthritis. J. Acupunct. Res. 47 (1), 21–26 (2022).
Malemud, C. J., Haque, A., Louis, N. A. & Wang, J. Immune response and apoptosis–introduction. J. Clin. Cell. Immunol. 3, e001 (2012).