Saturday, May 10, 2025
HomeRheumatoid ArthritisBuilding a modular and multi-cellular virtual twin of the synovial joint in...

Building a modular and multi-cellular virtual twin of the synovial joint in Rheumatoid Arthritis


  • Sparks, J. A. Rheumatoid Arthritis. Ann. Intern Med. 170, ITC1–ITC16 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ib, M. & G, S. Cytokines in the pathogenesis of rheumatoid arthritis. Nature reviews. Immunology https://pubmed.ncbi.nlm.nih.gov/17525752/ (2007).

  • El-Gabalawy, H. D. & Lipsky, P. E. Why do we not have a cure for rheumatoid arthritis? Arthritis Res 4, S297–S301. (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, Y.-J., Anzaghe, M. & Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells 9, 880 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bécède, M. et al. Risk profiling for a refractory course of rheumatoid arthritis. Semin Arthritis Rheum. 49, 211–217 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Madrid-Paredes, A., Martín, J. & Márquez, A. -Omic approaches and treatment response in rheumatoid arthritis. Pharmaceutics 14, 1648 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isaacs, J. D. et al. RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients. Sci. Data 9, 196 (2022).

    Article 

    Google Scholar 

  • Jiang, F. et al. A landscape of gene expression regulation for synovium in arthritis. Nat. Commun. 15, 1409 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Yim, A. Y. F. et al. Novel insights into rheumatoid arthritis through characterization of concordant changes in dna methylation and gene expression in synovial biopsies of patients with differing numbers of swollen joints. Front. Immunol. 12, 651475 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsuchiya, H. et al. Parsing multiomics landscape of activated synovial fibroblasts highlights drug targets linked to genetic risk of rheumatoid arthritis. Ann. Rheum. Dis. 80, 440–450 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Chaiamnuay, S. et al. Predictors of flare in rheumatoid arthritis patients with persistent clinical remission/low disease activity: Data from the TARAC cohort. Med. (Baltim.) 101, e29974 (2022).

    Article 

    Google Scholar 

  • Gul, H. et al. Predicting flare in patients with rheumatoid arthritis in biologic induced remission, on tapering, and on stable therapy. ACR Open Rheumatol. 6, 294–303 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Björnsson, B. et al. Digital twins to personalize medicine. Genome Med. 12, 4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, T. et al. The digital twin: a potential solution for the personalized diagnosis and treatment of musculoskeletal system diseases. Bioeng. (Basel) 10, 627 (2023).

    Google Scholar 

  • Laubenbacher, R. et al. Building digital twins of the human immune system: toward a roadmap. npj Digit. Med. 5, 1–5 (2022).

    Article 

    Google Scholar 

  • Zerrouk, N., Aghakhani, S., Singh, V., Aug‚, F. & Niarakis, A. A Mechanistic Cellular Atlas of the Rheumatic Joint. Front. Syst. Biol. 2, 925791 (2022).

    Article 

    Google Scholar 

  • Albert, I., Thakar, J., Li, S., Zhang, R. & Albert, R. Boolean network simulations for life scientists. Source Code Biol. Med. 3, 16 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albert, R. & Thakar, J. Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 353–369 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Hall, B. A. & Niarakis, A. Data integration in logic-based models of biological mechanisms. Curr. Opin. Syst. Biol. 28, 100386 (2021).

    Article 

    Google Scholar 

  • Zerrouk, N., Alcraft, R., Hall, B. A., Augé, F. & Niarakis, A. Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis. npj Syst. Biol. Appl. 10, 1–13 (2024).

    Article 

    Google Scholar 

  • Aghamiri, S. S. et al. Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics 36, 4473–4482 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hall, B. A. & Fisher, J. Constructing and analyzing computational models of cell signaling with biomodelanalyzer. Curr. Protoc. Bioinforma. 69, e95 (2020).

    Article 

    Google Scholar 

  • Huber, L. C. et al. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45, 669–675 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Németh, T., Nagy, G. & Pap, T. Synovial fibroblasts as potential drug targets in rheumatoid arthritis, where do we stand and where shall we go? Ann. Rheum. Dis. 81, 1055–1064 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Chu, C.-Q. Highlights of strategies targeting fibroblasts for novel therapies for rheumatoid arthritis. Front. Med. 9, 846300 (2022).

    Article 

    Google Scholar 

  • Ji, M., Ryu, H. J., Baek, H.-M., Shin, D. M. & Hong, J. H. Dynamic synovial fibroblasts are modulated by NBCn1 as a potential target in rheumatoid arthritis. Exp. Mol. Med. 54, 503–517 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, S., Kwon, E.-J. & Lee, J. J. Rheumatoid arthritis: pathogenic roles of diverse immune cells. Int J. Mol. Sci. 23, 905 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Loosdregt, J. et al. Increased autophagy in CD4+ T cells of rheumatoid arthritis patients results in T cell hyperactivation and apoptosis resistance. Eur. J. Immunol. 46, 2862–2870 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 50, D1398–D1407 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Helikar, T. et al. The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol. 6, 96 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niarakis, A. & Helikar, T. A practical guide to mechanistic systems modeling in biology using a logic-based approach. Brief. Bioinforma. 22, bbaa236 (2021).

    Article 

    Google Scholar 

  • Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Sun, T., He, X. & Li, Z. Digital twin in healthcare: recent updates and challenges. Digit Health 9, 20552076221149651 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine; National Academy of Engineering; Division on Earth and Life Studies; Division on Engineering and Physical Sciences; Board on Life Sciences; Board on Atmospheric Sciences and Climate; Computer Science and Telecommunications Board; Board on Mathematical Sciences and Analytics. Opportunities and Challenges for Digital Twins in Biomedical Research: Proceedings of a Workshop—in Brief. (National Academies Press (US), Washington (DC), 2023).

  • Corral-Acero, J. et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 41, 4556–4564 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Breton, M. D. et al. A randomized trial of closed-loop control in children with type 1 diabetes. N. Engl. J. Med. 383, 836–845 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batch, K. E. et al. Developing a cancer digital twin: supervised metastases detection from consecutive structured radiology reports. Front Artif. Intell. 5, 826402 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ivanov, D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res E Logist. Transp. Rev. 136, 101922. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xing, R. et al. Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin. Exp. Immunol. 184, 147–158 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. MiR-650 inhibits proliferation, migration and invasion of rheumatoid arthritis synovial fibroblasts by targeting AKT2. Biomed. Pharmacother. 88, 535–541 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Yu, F.-Y. et al. MiR-92a inhibits fibroblast-like synoviocyte proliferation and migration in rheumatoid arthritis by targeting AKT2. J. Biosci. 43, 911–919 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Trzybulska, D. et al. The effect of caveolin-1 knockdown on interleukin-1β-induced chemokine (C-C motif) ligand 2 expression in synovial fluid-derived fibroblast-like synoviocytes from patients with rheumatoid arthritis. Adv. Clin. Exp. Med. 27, 1491–1497 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Singh, V., Naldi, A., Soliman, S. & Niarakis, A. A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint. npj Syst. Biol. Appl. 9, 1–13 (2023).

    Article 

    Google Scholar 

  • Takeba, Y. et al. Involvement of cAMP responsive element binding protein (CREB) in the synovial cell hyperfunction in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 18, 47–55 (2000).

    PubMed 

    Google Scholar 

  • Nejatbakhsh Samimi, L. et al. NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Autoimmun. Highlights 11, 11 (2020).

    Article 

    Google Scholar 

  • Xue, M. et al. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatol. (Oxf.) 53, 2270–2279 (2014).

    Article 

    Google Scholar 

  • Lin, T.-H. et al. NF-κB as a therapeutic target in inflammatory-associated bone diseases. Adv. Protein Chem. Struct. Biol. 107, 117–154 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hilliard, B. A. et al. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J. Clin. Invest 110, 843–850 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Usui, T. et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 203, 755–766 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cejka, D. et al. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 62, 2294–2302 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Bruyn, G. A. W. et al. Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study. Ann. Rheum. Dis. 67, 1090–1095 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Magnol, M. et al. AB0040 JAK inhibitors – Baricitinib and Tofacitinib – modulate the in vitro inflammatory and alternative polarizations of macrophages. Ann. Rheum. Dis. 78, 1486–1487 (2019).

    Google Scholar 

  • McInnes, I. B. et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res. Ther. 21, 183 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dawson, D. W. et al. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol. 138, 707–717 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMorrow, J. P. et al. Tumor necrosis factor inhibition modulates thrombospondin-1 expression in human inflammatory joint disease through altered NR4A2 activity. Am. J. Pathol. 183, 1243–1257 (2013).

    Article 
    PubMed 

    Google Scholar 

  • O’Brien, C. A. Control of RANKL gene expression. Bone 46, 911–919 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Yokota, K. Osteoclast differentiation in rheumatoid arthritis. Immunol Med. 1–6 (2023).

  • O’Brien, C. A., Gubrij, I., Lin, S. C., Saylors, R. L. & Manolagas, S. C. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J. Biol. Chem. 274, 19301–19308 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Brasier, A. R. The nuclear factor-κB–interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res. 86, 211–218 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, R. L. et al. Comparative STAT3-regulated gene expression profile in renal cell carcinoma subtypes. Front. Oncol. 9, 72 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sciacca, E. et al. Network analysis of synovial RNA sequencing identifies gene-gene interactions predictive of response in rheumatoid arthritis. Arthritis Res. Ther. 24, 166 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zerrouk, N., Miagoux, Q., Dispot, A., Elati, M. & Niarakis, A. Identification of putative master regulators in rheumatoid arthritis synovial fibroblasts using gene expression data and network inference. Sci. Rep. 10, 16236 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balasundaram, A., Udhaya Kumar, S. & George Priya Doss, C. A computational model revealing the immune-related hub genes and key pathways involved in rheumatoid arthritis (RA). Adv. Protein Chem. Struct. Biol. 129, 247–273 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Moise, N. & Friedman, A. Rheumatoid arthritis – a mathematical model. J. Theor. Biol. 461, 17–33 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Friedman, A. & Lam, K.-Y. Analysis of a mathematical model of rheumatoid arthritis. J. Math. Biol. 80, 1857–1883 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Aghakhani, S., Zerrouk, N. & Niarakis, A. Metabolic Reprogramming of Fibroblasts as Therapeutic Target in Rheumatoid Arthritis and Cancer: Deciphering Key Mechanisms Using Computational Systems Biology Approaches. Cancers 13, 35 (2021).

    Article 

    Google Scholar 

  • About Causaly. https://www.causaly.com/about-causaly.

  • Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Noël, F. et al. Dissection of intercellular communication using the transcriptome-based framework ICELLNET. Nat. Commun. 12, 1089 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vahid, M. R. et al. DiSiR: fast and robust method to identify ligand-receptor interactions at subunit level from single-cell RNA-sequencing data. NAR Genom. Bioinform 5, lqad030 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Funahashi, A., Morohashi, M., Kitano, H. & Tanimura, N. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. U P DAT E 1, 4 (2003).

    Google Scholar 

  • Le Novère, N. et al. The systems biology graphical notation. Nat. Biotechnol. 27, 735–741 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Juty, N., Le Novère, N. & Laibe, C. Identifiers.org and MIRIAM Registry: community resources to provide persistent identification. Nucleic Acids Res. 40, D580–D586 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Kang, K. et al. Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 47, 235–250.e4 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clough, E. & Barrett, T. The gene expression omnibus database. Methods Mol. Biol. 1418, 93–110 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parkinson, H. et al. ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35, D747–D750 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhattacharya, S. et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci. Data 5, 180015 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments