Sparks, J. A. Rheumatoid Arthritis. Ann. Intern Med. 170, ITC1–ITC16 (2019).
Google Scholar
Ib, M. & G, S. Cytokines in the pathogenesis of rheumatoid arthritis. Nature reviews. Immunology https://pubmed.ncbi.nlm.nih.gov/17525752/ (2007).
El-Gabalawy, H. D. & Lipsky, P. E. Why do we not have a cure for rheumatoid arthritis? Arthritis Res 4, S297–S301. (2002).
Google Scholar
Lin, Y.-J., Anzaghe, M. & Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells 9, 880 (2020).
Google Scholar
Bécède, M. et al. Risk profiling for a refractory course of rheumatoid arthritis. Semin Arthritis Rheum. 49, 211–217 (2019).
Google Scholar
Madrid-Paredes, A., Martín, J. & Márquez, A. -Omic approaches and treatment response in rheumatoid arthritis. Pharmaceutics 14, 1648 (2022).
Google Scholar
Isaacs, J. D. et al. RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients. Sci. Data 9, 196 (2022).
Google Scholar
Jiang, F. et al. A landscape of gene expression regulation for synovium in arthritis. Nat. Commun. 15, 1409 (2024).
Google Scholar
Li Yim, A. Y. F. et al. Novel insights into rheumatoid arthritis through characterization of concordant changes in dna methylation and gene expression in synovial biopsies of patients with differing numbers of swollen joints. Front. Immunol. 12, 651475 (2021).
Google Scholar
Tsuchiya, H. et al. Parsing multiomics landscape of activated synovial fibroblasts highlights drug targets linked to genetic risk of rheumatoid arthritis. Ann. Rheum. Dis. 80, 440–450 (2021).
Google Scholar
Chaiamnuay, S. et al. Predictors of flare in rheumatoid arthritis patients with persistent clinical remission/low disease activity: Data from the TARAC cohort. Med. (Baltim.) 101, e29974 (2022).
Google Scholar
Gul, H. et al. Predicting flare in patients with rheumatoid arthritis in biologic induced remission, on tapering, and on stable therapy. ACR Open Rheumatol. 6, 294–303 (2024).
Google Scholar
Björnsson, B. et al. Digital twins to personalize medicine. Genome Med. 12, 4 (2019).
Google Scholar
Sun, T. et al. The digital twin: a potential solution for the personalized diagnosis and treatment of musculoskeletal system diseases. Bioeng. (Basel) 10, 627 (2023).
Laubenbacher, R. et al. Building digital twins of the human immune system: toward a roadmap. npj Digit. Med. 5, 1–5 (2022).
Google Scholar
Zerrouk, N., Aghakhani, S., Singh, V., Aug‚, F. & Niarakis, A. A Mechanistic Cellular Atlas of the Rheumatic Joint. Front. Syst. Biol. 2, 925791 (2022).
Google Scholar
Albert, I., Thakar, J., Li, S., Zhang, R. & Albert, R. Boolean network simulations for life scientists. Source Code Biol. Med. 3, 16 (2008).
Google Scholar
Albert, R. & Thakar, J. Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 353–369 (2014).
Google Scholar
Hall, B. A. & Niarakis, A. Data integration in logic-based models of biological mechanisms. Curr. Opin. Syst. Biol. 28, 100386 (2021).
Google Scholar
Zerrouk, N., Alcraft, R., Hall, B. A., Augé, F. & Niarakis, A. Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis. npj Syst. Biol. Appl. 10, 1–13 (2024).
Google Scholar
Aghamiri, S. S. et al. Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics 36, 4473–4482 (2020).
Google Scholar
Hall, B. A. & Fisher, J. Constructing and analyzing computational models of cell signaling with biomodelanalyzer. Curr. Protoc. Bioinforma. 69, e95 (2020).
Google Scholar
Huber, L. C. et al. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45, 669–675 (2006).
Google Scholar
Németh, T., Nagy, G. & Pap, T. Synovial fibroblasts as potential drug targets in rheumatoid arthritis, where do we stand and where shall we go? Ann. Rheum. Dis. 81, 1055–1064 (2022).
Google Scholar
Chu, C.-Q. Highlights of strategies targeting fibroblasts for novel therapies for rheumatoid arthritis. Front. Med. 9, 846300 (2022).
Google Scholar
Ji, M., Ryu, H. J., Baek, H.-M., Shin, D. M. & Hong, J. H. Dynamic synovial fibroblasts are modulated by NBCn1 as a potential target in rheumatoid arthritis. Exp. Mol. Med. 54, 503–517 (2022).
Google Scholar
Jang, S., Kwon, E.-J. & Lee, J. J. Rheumatoid arthritis: pathogenic roles of diverse immune cells. Int J. Mol. Sci. 23, 905 (2022).
Google Scholar
van Loosdregt, J. et al. Increased autophagy in CD4+ T cells of rheumatoid arthritis patients results in T cell hyperactivation and apoptosis resistance. Eur. J. Immunol. 46, 2862–2870 (2016).
Google Scholar
Zhou, Y. et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 50, D1398–D1407 (2022).
Google Scholar
Helikar, T. et al. The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol. 6, 96 (2012).
Google Scholar
Niarakis, A. & Helikar, T. A practical guide to mechanistic systems modeling in biology using a logic-based approach. Brief. Bioinforma. 22, bbaa236 (2021).
Google Scholar
Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).
Google Scholar
Sun, T., He, X. & Li, Z. Digital twin in healthcare: recent updates and challenges. Digit Health 9, 20552076221149651 (2023).
Google Scholar
National Academies of Sciences, Engineering, and Medicine; National Academy of Engineering; Division on Earth and Life Studies; Division on Engineering and Physical Sciences; Board on Life Sciences; Board on Atmospheric Sciences and Climate; Computer Science and Telecommunications Board; Board on Mathematical Sciences and Analytics. Opportunities and Challenges for Digital Twins in Biomedical Research: Proceedings of a Workshop—in Brief. (National Academies Press (US), Washington (DC), 2023).
Corral-Acero, J. et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 41, 4556–4564 (2020).
Google Scholar
Breton, M. D. et al. A randomized trial of closed-loop control in children with type 1 diabetes. N. Engl. J. Med. 383, 836–845 (2020).
Google Scholar
Batch, K. E. et al. Developing a cancer digital twin: supervised metastases detection from consecutive structured radiology reports. Front Artif. Intell. 5, 826402 (2022).
Google Scholar
Ivanov, D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res E Logist. Transp. Rev. 136, 101922. (2020).
Google Scholar
Xing, R. et al. Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin. Exp. Immunol. 184, 147–158 (2016).
Google Scholar
Xu, X. et al. MiR-650 inhibits proliferation, migration and invasion of rheumatoid arthritis synovial fibroblasts by targeting AKT2. Biomed. Pharmacother. 88, 535–541 (2017).
Google Scholar
Yu, F.-Y. et al. MiR-92a inhibits fibroblast-like synoviocyte proliferation and migration in rheumatoid arthritis by targeting AKT2. J. Biosci. 43, 911–919 (2018).
Google Scholar
Trzybulska, D. et al. The effect of caveolin-1 knockdown on interleukin-1β-induced chemokine (C-C motif) ligand 2 expression in synovial fluid-derived fibroblast-like synoviocytes from patients with rheumatoid arthritis. Adv. Clin. Exp. Med. 27, 1491–1497 (2018).
Google Scholar
Singh, V., Naldi, A., Soliman, S. & Niarakis, A. A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint. npj Syst. Biol. Appl. 9, 1–13 (2023).
Google Scholar
Takeba, Y. et al. Involvement of cAMP responsive element binding protein (CREB) in the synovial cell hyperfunction in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 18, 47–55 (2000).
Google Scholar
Nejatbakhsh Samimi, L. et al. NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Autoimmun. Highlights 11, 11 (2020).
Google Scholar
Xue, M. et al. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatol. (Oxf.) 53, 2270–2279 (2014).
Google Scholar
Lin, T.-H. et al. NF-κB as a therapeutic target in inflammatory-associated bone diseases. Adv. Protein Chem. Struct. Biol. 107, 117–154 (2017).
Google Scholar
Hilliard, B. A. et al. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J. Clin. Invest 110, 843–850 (2002).
Google Scholar
Usui, T. et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 203, 755–766 (2006).
Google Scholar
Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).
Google Scholar
Cejka, D. et al. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 62, 2294–2302 (2010).
Google Scholar
Bruyn, G. A. W. et al. Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study. Ann. Rheum. Dis. 67, 1090–1095 (2008).
Google Scholar
Magnol, M. et al. AB0040 JAK inhibitors – Baricitinib and Tofacitinib – modulate the in vitro inflammatory and alternative polarizations of macrophages. Ann. Rheum. Dis. 78, 1486–1487 (2019).
McInnes, I. B. et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res. Ther. 21, 183 (2019).
Google Scholar
Dawson, D. W. et al. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol. 138, 707–717 (1997).
Google Scholar
McMorrow, J. P. et al. Tumor necrosis factor inhibition modulates thrombospondin-1 expression in human inflammatory joint disease through altered NR4A2 activity. Am. J. Pathol. 183, 1243–1257 (2013).
Google Scholar
O’Brien, C. A. Control of RANKL gene expression. Bone 46, 911–919 (2010).
Google Scholar
Yokota, K. Osteoclast differentiation in rheumatoid arthritis. Immunol Med. 1–6 (2023).
O’Brien, C. A., Gubrij, I., Lin, S. C., Saylors, R. L. & Manolagas, S. C. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J. Biol. Chem. 274, 19301–19308 (1999).
Google Scholar
Brasier, A. R. The nuclear factor-κB–interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res. 86, 211–218 (2010).
Google Scholar
Robinson, R. L. et al. Comparative STAT3-regulated gene expression profile in renal cell carcinoma subtypes. Front. Oncol. 9, 72 (2019).
Google Scholar
Sciacca, E. et al. Network analysis of synovial RNA sequencing identifies gene-gene interactions predictive of response in rheumatoid arthritis. Arthritis Res. Ther. 24, 166 (2022).
Google Scholar
Zerrouk, N., Miagoux, Q., Dispot, A., Elati, M. & Niarakis, A. Identification of putative master regulators in rheumatoid arthritis synovial fibroblasts using gene expression data and network inference. Sci. Rep. 10, 16236 (2020).
Google Scholar
Balasundaram, A., Udhaya Kumar, S. & George Priya Doss, C. A computational model revealing the immune-related hub genes and key pathways involved in rheumatoid arthritis (RA). Adv. Protein Chem. Struct. Biol. 129, 247–273 (2022).
Google Scholar
Moise, N. & Friedman, A. Rheumatoid arthritis – a mathematical model. J. Theor. Biol. 461, 17–33 (2019).
Google Scholar
Friedman, A. & Lam, K.-Y. Analysis of a mathematical model of rheumatoid arthritis. J. Math. Biol. 80, 1857–1883 (2020).
Google Scholar
Aghakhani, S., Zerrouk, N. & Niarakis, A. Metabolic Reprogramming of Fibroblasts as Therapeutic Target in Rheumatoid Arthritis and Cancer: Deciphering Key Mechanisms Using Computational Systems Biology Approaches. Cancers 13, 35 (2021).
Google Scholar
About Causaly. https://www.causaly.com/about-causaly.
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).
Google Scholar
Noël, F. et al. Dissection of intercellular communication using the transcriptome-based framework ICELLNET. Nat. Commun. 12, 1089 (2021).
Google Scholar
Vahid, M. R. et al. DiSiR: fast and robust method to identify ligand-receptor interactions at subunit level from single-cell RNA-sequencing data. NAR Genom. Bioinform 5, lqad030 (2023).
Google Scholar
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).
Google Scholar
Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).
Google Scholar
Funahashi, A., Morohashi, M., Kitano, H. & Tanimura, N. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. U P DAT E 1, 4 (2003).
Le Novère, N. et al. The systems biology graphical notation. Nat. Biotechnol. 27, 735–741 (2009).
Google Scholar
Juty, N., Le Novère, N. & Laibe, C. Identifiers.org and MIRIAM Registry: community resources to provide persistent identification. Nucleic Acids Res. 40, D580–D586 (2012).
Google Scholar
Kang, K. et al. Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 47, 235–250.e4 (2017).
Google Scholar
Clough, E. & Barrett, T. The gene expression omnibus database. Methods Mol. Biol. 1418, 93–110 (2016).
Google Scholar
Parkinson, H. et al. ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35, D747–D750 (2007).
Google Scholar
Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).
Google Scholar
Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).
Google Scholar
Bhattacharya, S. et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci. Data 5, 180015 (2018).
Google Scholar