Monday, December 23, 2024
HomeRheumatoid ArthritisJoint-specific memory, resident memory T cells and the rolling window of opportunity...

Joint-specific memory, resident memory T cells and the rolling window of opportunity in arthritis

Random Image Popup


  • Chang, M. H. & Nigrovic, P. A. Antibody-dependent and -independent mechanisms of inflammatory arthritis. JCI Insight 4, https://doi.org/10.1172/jci.insight.125278 (2019).

  • Gravallese, E. M. & Firestein, G. S. Rheumatoid arthritis — common origins, divergent mechanisms. N. Engl. J. Med. 388, 529–542 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Roberts, W. N., Daltroy, L. H. & Anderson, R. J. Stability of normal joint findings in persistent classic rheumatoid arthritis. Arthritis Rheum. 31, 267–271 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Chang, M. H. et al. Joint-specific memory and sustained risk for new joint accumulation in autoimmune arthritis. Arthritis Rheumatol. 74, 1851–1858 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, M. H. et al. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell Rep. 37, 109902 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heckert, S. L. et al. Joint inflammation tends to recur in the same joints during the rheumatoid arthritis disease course. Ann. Rheum. Dis. 81, 169–174 (2022).

    PubMed 

    Google Scholar 

  • Heckert, S. L. et al. Patterns of clinical joint inflammation in juvenile idiopathic arthritis. RMD Open 9, e002941 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boniface, K. et al. Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3. J. Invest. Dermatol. 138, 355–364 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Richmond, J. M. et al. Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo. J. Invest. Dermatol. 139, 769–778 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199, 731–736 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samat, A. A. K., van der Geest, J., Vastert, S. J., van Loosdregt, J. & van Wijk, F. Tissue-resident memory T cells in chronic inflammation-local cells with systemic effects? Cells 10, 409 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fonseca, R. et al. Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wijeyesinghe, S. et al. Expansible residence decentralizes immune homeostasis. Nature 592, 457–462 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Heeg, M. & Goldrath, A. W. Insights into phenotypic and functional CD8+ TRM heterogeneity. Immunol. Rev. 316, 8–22 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crowl, J. T. et al. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nat. Immunol. 23, 1121–1131 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Poon, M. M. L. et al. Tissue adaptation and clonal segregation of human memory T cells in barrier sites. Nat. Immunol. 24, 309–319 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christo, S. N. et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nat. Immunol. 22, 1140–1151 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, Y. H. et al. Small intestine and colon tissue-resident memory CD8+ T cells exhibit molecular heterogeneity and differential dependence on Eomes. Immunity 56, 207–223.e8 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Schenkel, J. M. et al. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells. J. Immunol. 196, 3920–3926 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • FitzPatrick, M. E. B. et al. Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets. Cell Rep. 34, 108661 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milner, J. J. et al. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity 52, 808–824.e7 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frizzell, H. et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 5, https://doi.org/10.1126/sciimmunol.aay9283 (2020).

  • Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P. & Waldmann, H. The role of lipid metabolism in T lymphocyte differentiation and survival. Front. Immunol. 8, 1949 (2017).

    PubMed 

    Google Scholar 

  • Jin, R. et al. Role of FABP5 in T cell lipid metabolism and function in the tumor microenvironment. Cancers 15, https://doi.org/10.3390/cancers15030657 (2023).

  • Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, J. et al. Synovial fluid CD69+CD8+ T cells with tissue-resident phenotype mediate perforin-dependent citrullination in rheumatoid arthritis. Clin. Transl. Immunol. 9, e1140 (2020).

    CAS 

    Google Scholar 

  • Guggino, G., Rizzo, A., Mauro, D., Macaluso, F. & Ciccia, F. Gut-derived CD8+ tissue-resident memory T cells are expanded in the peripheral blood and synovia of SpA patients. Ann. Rheum. Dis. 80, e174 (2021).

    PubMed 

    Google Scholar 

  • Horai, R. et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J. Exp. Med. 191, 313–320 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jonsson, A. H. et al. Granzyme K+ CD8 T cells form a core population in inflamed human tissue. Sci. Transl. Med. 14, eabo0686 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrelli, A. et al. PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. J. Clin. Invest. 128, 4669–4681 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanni, A. et al. Clonally expanded PD-1-expressing T cells are enriched in synovial fluid of juvenile idiopathic arthritis patients. Eur. J. Immunol. 53, e2250162 (2023).

    PubMed 

    Google Scholar 

  • Maschmeyer, P. et al. Antigen-driven PD-1+ TOX+ BHLHE40+ and PD-1+ TOX+ EOMES+ T lymphocytes regulate juvenile idiopathic arthritis in situ. Eur. J. Immunol. 51, 915–929 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Povoleri, G. A. M. et al. Psoriatic and rheumatoid arthritis joints differ in the composition of CD8+ tissue-resident memory T cell subsets. Cell Rep. 42, 112514 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qaiyum, Z., Gracey, E., Yao, Y. & Inman, R. D. Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann. Rheum. Dis. 78, 1566–1575 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sasson, S. C., Gordon, C. L., Christo, S. N., Klenerman, P. & Mackay, L. K. Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell Mol. Immunol. 17, 113–122 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, M. et al. JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis. J. Autoimmun. 109, 102424 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Boothby, I. C. et al. Early-life inflammation primes a T helper 2 cell-fibroblast niche in skin. Nature 599, 667–672 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nygaard, G. & Firestein, G. S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. 16, 316–333 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Whitaker, J. W. et al. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med. 5, 40 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ai, R. et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol. 67, 1978–1980 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crowley, T. et al. Priming in response to pro-inflammatory cytokines is a feature of adult synovial but not dermal fibroblasts. Arthritis Res. Ther. 19, 35 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Friscic, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Friscic, J. et al. Reset of inflammatory priming of joint tissue and reduction of the severity of arthritis flares by bromodomain inhibition. Arthritis Rheumatol. 75, 517–532 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orange, D. E. et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N. Engl. J. Med. 383, 218–228 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciurea, A. et al. Joint-level responses to tofacitinib and methotrexate: a post hoc analysis of data from ORAL Start. Arthritis Res. Ther. 25, 185 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat. Rev. Rheumatol. 18, 384–397 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Misharin, A. V. et al. Nonclassical Ly6C− monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 9, 591–604 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montgomery, A. B. et al. Tissue-resident, extravascular Ly6c− monocytes are critical for inflammation in the synovium. Cell Rep. 42, 112513 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alivernini, S. et al. Synovial features of patients with rheumatoid arthritis and psoriatic arthritis in clinical and ultrasound remission differ under anti-TNF therapy: a clue to interpret different chances of relapse after clinical remission? Ann. Rheum. Dis. 76, 1228–1236 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Aegerter, H. et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat. Immunol. 21, 145–157 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guilliams, M. & Svedberg, F. R. Does tissue imprinting restrict macrophage plasticity? Nat. Immunol. 22, 118–127 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hanlon, M. M. et al. Rheumatoid arthritis macrophages are primed for inflammation and display bioenergetic and functional alterations. Rheumatology 62, 2611–2620 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Vickovic, S. et al. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. Commun. Biol. 5, 129 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vu, T. T., Koguchi-Yoshioka, H. & Watanabe, R. Skin-resident memory T cells: pathogenesis and implication for the treatment of psoriasis. J. Clin. Med. 10, https://doi.org/10.3390/jcm10173822 (2021).

  • Puig, L. et al. The biological basis of disease recurrence in psoriasis: a historical perspective and current models. Br. J. Dermatol. 186, 773–781 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Matos, T. R. et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing ɑβ T cell clones. J. Clin. Invest. 127, 4031–4041 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X., Jiang, M., Chen, X. & Sun, W. Etanercept alleviates psoriasis by reducing the Th17/Treg ratio and promoting M2 polarization of macrophages. Immun. Inflamm. Dis. 10, e734 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mehta, H. et al. Differential changes in inflammatory mononuclear phagocyte and T-cell profiles within psoriatic skin during treatment with guselkumab vs. secukinumab. J. Invest. Dermatol. 141, 1707–1718.e9 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Whitley, S. K. et al. Local IL-23 is required for proliferation and retention of skin-resident memory TH17 cells. Sci. Immunol. 7, eabq3254 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, C., Lin, L. & Du, J. Characteristics and sources of tissue-resident memory T cells in psoriasis relapse. Curr. Res. Immunol. 4, 100067 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monti, S., Montecucco, C., Bugatti, S. & Caporali, R. Rheumatoid arthritis treatment: the earlier the better to prevent joint damage. RMD Open 1, e000057 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraenkel, L. et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. 73, 924–939 (2021).

    Google Scholar 

  • Boers, M. Understanding the window of opportunity concept in early rheumatoid arthritis. Arthritis Rheum. 48, 1771–1774 (2003).

    PubMed 

    Google Scholar 

  • van Nies, J. A. et al. What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review. Ann. Rheum. Dis. 73, 861–870 (2014).

    PubMed 

    Google Scholar 

  • Burgers, L. E., Raza, K. & van der Helm-van Mil, A. H. Window of opportunity in rheumatoid arthritis — definitions and supporting evidence: from old to new perspectives. RMD Open 5, e000870 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nigrovic, P. A. Review: Is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheumatol. 66, 1405–1413 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Nigrovic, P. A. et al. Biological classification of childhood arthritis: roadmap to a molecular nomenclature. Nat. Rev. Rheumatol. 17, 257–269 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nigrovic, P. A. et al. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 63, 545–555 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Ter Haar, N. M. et al. Treatment to target using recombinant interleukin-1 receptor antagonist as first-line monotherapy in new-onset systemic juvenile idiopathic arthritis: results from a five-year follow-up study. Arthritis Rheumatol. 71, 1163–1173 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pardeo, M. et al. Early treatment and IL1RN single-nucleotide polymorphisms affect response to anakinra in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 73, 1053–1061 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Henderson, L. A. et al. Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis. JCI Insight 5, https://doi.org/10.1172/jci.insight.132508 (2020).

  • Levescot, A. et al. IL-1β-driven osteoclastogenic Tregs accelerate bone erosion in arthritis. J. Clin. Invest. 131, https://doi.org/10.1172/JCI141008 (2021).

  • Alivernini, S. et al. Inclusion of synovial tissue-derived characteristics in a nomogram for the prediction of treatment response in treatment-naive rheumatoid arthritis patients. Arthritis Rheumatol. 73, 1601–1613 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergstra, S. A. et al. Earlier is better when treating rheumatoid arthritis: but can we detect a window of opportunity? RMD Open 6, https://doi.org/10.1136/rmdopen-2020-001242 (2020).

  • Goekoop-Ruiterman, Y. P. et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): a randomized, controlled trial. Arthritis Rheum. 52, 3381–3390 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Wevers-de Boer, K. et al. Remission induction therapy with methotrexate and prednisone in patients with early rheumatoid and undifferentiated arthritis (the IMPROVED study). Ann. Rheum. Dis. 71, 1472–1477 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Ebrahimian, S. et al. Can treating rheumatoid arthritis with disease-modifying anti-rheumatic drugs at the window of opportunity with tight control strategy lead to long-term remission and medications free remission in real-world clinical practice? A cohort study. Clin. Rheumatol. 40, 4485–4491 (2021).

    PubMed 

    Google Scholar 

  • Krijbolder, D. I. et al. Intervention with methotrexate in patients with arthralgia at risk of rheumatoid arthritis to reduce the development of persistent arthritis and its disease burden (TREAT EARLIER): a randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet 400, 283–294 (2022).

    PubMed 

    Google Scholar 

  • Cope, A. P. et al. Abatacept in individuals at high risk of rheumatoid arthritis (APIPPRA): a randomised, double-blind, multicentre, parallel, placebo-controlled, phase 2b clinical trial. Lancet 403, 838–849 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Sugiyama, D. et al. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 69, 70–81 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Anderson, J. J., Wells, G., Verhoeven, A. C. & Felson, D. T. Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. Arthritis Rheum. 43, 22–29 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Aletaha, D. et al. Effect of disease duration and prior disease-modifying antirheumatic drug use on treatment outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 78, 1609–1615 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kerschbaumer, A. et al. Efficacy of synthetic and biological DMARDs: a systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 82, 95–106 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Chang, C. Y., Meyer, R. M. & Reiff, A. O. Impact of medication withdrawal method on flare-free survival in patients with juvenile idiopathic arthritis on combination therapy. Arthritis Care Res. 67, 658–666 (2015).

    CAS 

    Google Scholar 

  • Guzman, J. et al. The risk and nature of flares in juvenile idiopathic arthritis: results from the ReACCh-Out cohort. Ann. Rheum. Dis. 75, 1092–1098 (2016).

    PubMed 

    Google Scholar 

  • Simonini, G. et al. Flares after withdrawal of biologic therapies in juvenile idiopathic arthritis: clinical and laboratory correlates of remission duration. Arthritis Care Res. 70, 1046–1051 (2018).

    Google Scholar 

  • Curtis, J. R. et al. Etanercept or methotrexate withdrawal in rheumatoid arthritis patients in sustained remission. Arthritis Rheumatol. 73, 759–768 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emery, P. et al. Adalimumab dose tapering in patients with rheumatoid arthritis who are in long-standing clinical remission: results of the phase IV PREDICTRA study. Ann. Rheum. Dis. 79, 1023–1030 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ringold, S. et al. Disease recapture rates after medication discontinuation and flare in juvenile idiopathic arthritis: an observational study within the childhood arthritis and rheumatology research alliance registry. Arthritis Care Res. 75, 715–723 (2023).

    Google Scholar 

  • Richmond, J. M. et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci. Transl. Med. 10, https://doi.org/10.1126/scitranslmed.aam7710 (2018).

  • Hassert, M. et al. Regenerating murine CD8+ lung tissue resident memory T cells after targeted radiation exposure. J. Exp. Med. 221, https://doi.org/10.1084/jem.20231144 (2024).

  • Schenkel, J. M., Fraser, K. A. & Masopust, D. Cutting edge: resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs. J. Immunol. 192, 2961–2964 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stolley, J. M. et al. Retrograde migration supplies resident memory T cells to lung-draining LN after influenza infection. J. Exp. Med. 217, https://doi.org/10.1084/jem.20192197 (2020).

  • Klicznik, M. M. et al. Human CD4+CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci. Immunol. 4, https://doi.org/10.1126/sciimmunol.aav8995 (2019).

  • Mijnheer, G. et al. Compartmentalization and persistence of dominant (regulatory) T cell clones indicates antigen skewing in juvenile idiopathic arthritis. Elife 12, https://doi.org/10.7554/eLife.79016 (2023).

  • Spreafico, R. et al. A circulating reservoir of pathogenic-like CD4+ T cells shares a genetic and phenotypic signature with the inflamed synovial micro-environment. Ann. Rheum. Dis. 75, 459–465 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Leijten, E. F. et al. Tissue-resident memory CD8+ T cells from skin differentiate psoriatic arthritis from psoriasis. Arthritis Rheumatol. 73, 1220–1232 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kunnamo, I., Kallio, P., Pelkonen, P. & Viander, M. Serum-sickness-like disease is a common cause of acute arthritis in children. Acta Paediatr. Scand. 75, 964–969 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Lawley, T. J. et al. A prospective clinical and immunologic analysis of patients with serum sickness. N. Engl. J. Med. 311, 1407–1413 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Steere, A. C. et al. Treatment of Lyme arthritis. Arthritis Rheum. 37, 878–888 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Oen, K. et al. Early predictors of longterm outcome in patients with juvenile rheumatoid arthritis: subset-specific correlations. J. Rheumatol. 30, 585–593 (2003).

    PubMed 

    Google Scholar 

  • Selvaag, A. M., Aulie, H. A., Lilleby, V. & Flato, B. Disease progression into adulthood and predictors of long-term active disease in juvenile idiopathic arthritis. Ann. Rheum. Dis. 75, 190–195 (2016).

    PubMed 

    Google Scholar 

  • Lengl-Janssen, B., Strauss, A. F., Steere, A. C. & Kamradt, T. The T helper cell response in Lyme arthritis: differential recognition of Borrelia burgdorferi outer surface protein A in patients with treatment-resistant or treatment-responsive Lyme arthritis. J. Exp. Med. 180, 2069–2078 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Steere, A. C. et al. Antibiotic-refractory Lyme arthritis is associated with HLA−DR molecules that bind a Borrelia burgdorferi peptide. J. Exp. Med. 203, 961–971 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • James, E. A. et al. Citrulline-specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheumatol. 66, 1712–1722 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nigrovic, P. A. & White, P. H. Care of the adult with juvenile rheumatoid arthritis. Arthritis Rheum. 55, 208–216 (2006).

    PubMed 

    Google Scholar 

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments