Smith, M. H. & Berman, J. R. What Is Rheumatoid Arthritis? JAMA327, 1194 (2022).
Google ScholarÂ
Kinne, R. W., Stuhlmüller, B. & Burmester, G. R. Cells of the synovium in rheumatoid arthritis. Macrophages. Arthritis Res. Ther.9, 224 (2007).
Google ScholarÂ
Athanasou, N. A. Synovial macrophages. Ann. Rheum. Dis.54, 392–394 (1995).
Google ScholarÂ
Ardura, J. A. et al. Targeting macrophages: friends or foes in Disease? Front. Pharmacol.10, 1255 (2019).
Google ScholarÂ
Ali, S. A., Peffers, M. J., Ormseth, M. J., Jurisica, I. & Kapoor, M. The non-coding RNA interactome in joint health and disease. Nat. Rev. Rheumatol.17, 692–705 (2021).
Google ScholarÂ
Wen, J., Liu, J., Wan, L. & Wang, F. Long noncoding RNA/circular RNA regulates competitive endogenous RNA networks in rheumatoid arthritis: molecular mechanisms and traditional Chinese medicine therapeutic significances. Ann. Med.55, 973–989 (2023).
Google ScholarÂ
England, B. R., Thiele, G. M., Anderson, D. R. & Mikuls, T. R. Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. BMJ361, k1036 (2018).
Google ScholarÂ
Tan, J., Liu, S., Jiang, Q., Yu, T. & Huang, K. LncRNA-MIAT Increased in Patients with Coronary Atherosclerotic Heart Disease. Cardiol. Res. Pract. 6280194 (2019). (2019).
Yan, B. et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res.116, 1143–1156 (2015).
Google ScholarÂ
Ye, Z. M. et al. LncRNA MIAT sponges mir-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell. Death Dis.10, 138 (2019).
Google ScholarÂ
Qi, Y. et al. LncRNA-MIAT-Mediated mir-214-3p silencing is responsible for IL-17 production and Cardiac Fibrosis in Diabetic Cardiomyopathy. Front. Cell. Dev. Biol.8, 243 (2020).
Google ScholarÂ
Zhou, L. et al. Long non-coding MIAT mediates high glucose-induced renal tubular epithelial injury. Biochem. Biophys. Res. Commun.468, 726–732 (2015).
Google ScholarÂ
Dong, Q. et al. Long noncoding RNA MIAT inhibits the progression of diabetic nephropathy and the activation of NF-κB pathway in high glucose-treated renal tubular epithelial cells by the miR-182-5p/GPRC5A axis. Open. Med.16, 1336–1349 (2021).
Google ScholarÂ
Wang, Z. et al. LncRNA MIAT downregulates IL-1β, TNF-ɑ to suppress macrophage inflammation but is suppressed by ATP-induced NLRP3 inflammasome activation. Cell. Cycle20, 194–203 (2021).
Google ScholarÂ
Mousavi, M. J. et al. Implications of the noncoding RNAs in rheumatoid arthritis pathogenesis. J. Cell. Physiol.234, 335–347 (2018).
Google ScholarÂ
Li, L. J. et al. Competitive endogenous RNA network: potential implication for systemic lupus erythematosus. Expert Opin. Ther. Targets21, 639–648 (2017).
Google ScholarÂ
Ala, U. Competing endogenous RNAs, non-coding RNAs and diseases: an intertwined story. Cells9, 1574 (2020).
Google ScholarÂ
Chen, J. Q., Papp, G., Szodoray, P. & Zeher, M. The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun. Rev.15, 1171–1180 (2016).
Google ScholarÂ
Zhang, Y. et al. Inferences of individual differences in response to tripterysium glycosides across patients with rheumatoid arthritis using a novel ceRNA regulatory axis. Clin. Transl Med.10, e185 (2020).
Google ScholarÂ
Yang, M. et al. Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related ceRNA networks. BMC Musculoskelet. Disord.24, 799 (2023).
Google ScholarÂ
Fu, Q., Song, M. J. & Fang, J. LncRNA OSER1-AS1 regulates the inflammation and apoptosis of rheumatoid arthritis fibroblast like synoviocytes via regulating miR-1298-5p/E2F1 axis. Bioengineered13, 4951–4963 (2022).
Google ScholarÂ
Jiang, H., Liu, J., Fan, C., Wang, J. & Li, W. lncRNAS56464.1 as a ceRNA promotes the proliferation of fibroblast–like synoviocytes in experimental arthritis via the wnt signaling pathway and sponges miR–152–3p. Int. J. Mol. Med.47, 17 (2021).
Google ScholarÂ
Yan, S. et al. Long non-coding RNA HIX003209 promotes inflammation by sponging miR-6089 via TLR4/NF-κB signaling pathway in rheumatoid arthritis. Front. Immunol.10, 2218 (2019).
Google ScholarÂ
Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest.120, 1084–1096 (2010).
Google ScholarÂ
Celia, A. I., Colafrancesco, S., Barbati, C., Alessandri, C. & Conti, F. Autophagy in Rheumatic diseases: Role in the Pathogenesis and therapeutic approaches. Cells11, 1359 (2022).
Google ScholarÂ
Yang, S., Yin, W., Ding, Y. & Liu, F. Lnc RNA ZFAS1 regulates the proliferation, apoptosis, inflammatory response and autophagy of fibroblast-like synoviocytes via miR-2682-5p/ADAMTS9 axis in rheumatoid arthritis. Biosci. Rep.40, BSR20201273 (2020).
Tofigh, R., Hosseinpourfeizi, M., Baradaran, B., Teimourian, S. & Safaralizadeh, R. Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci.315, 121367 (2023).
Google ScholarÂ
Huang, W. et al. LncRNAs and rheumatoid arthritis: from identifying mechanisms to Clinical Investigation. Front. Immunol.12, 807738 (2022).
Google ScholarÂ
Udalova, I. A., Mantovani, A. & Feldmann, M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol.12, 472–485 (2016).
Google ScholarÂ
Maldonado, R. F., Sá-Correia, I. & Valvano, M. A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev.40, 480–493 (2016).
Google ScholarÂ
Li, J. et al. Long noncoding RNA MIAT regulates hyperosmotic stress-Induced corneal epithelial cell Injury via inhibiting the caspase-1-Dependent pyroptosis and apoptosis in Dry Eye Disease. J. Inflamm. Res.15, 3269–3283 (2022).
Google ScholarÂ
Zhang, M. et al. Ablation of lncRNA MIAT mitigates high glucose-stimulated inflammation and apoptosis of podocyte via miR-130a-3p/TLR4 signaling axis. Biochem. Biophys. Res. Commun.533, 429–436 (2020).
Google ScholarÂ
Chen, X. M. et al. Role of Micro RNAs in the pathogenesis of rheumatoid arthritis: novel perspectives based on review of the literature. Med. (Baltim).94, e1326 (2015).
Google ScholarÂ
Churov, A. V., Oleinik, E. K. & Knip, M. MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun. Rev.14, 1029–1037 (2015).
Google ScholarÂ
Shangxun, Z. et al. ADAR1 Alleviates Inflammation in a Murine Sepsis Model via the ADAR1-miR-30a-SOCS3 Axis. Mediators Inflamm. 9607535 (2020). (2020).
Zhang, Y. et al. Long noncoding RNA LINC00461 induced osteoarthritis progression by inhibiting miR-30a-5p. Aging12, 4111–4123 (2020).
Google ScholarÂ
Liu, X. et al. miR-30a-5p inhibits osteogenesis and promotes periodontitis by targeting Runx2. BMC Oral Health21, 513 (2021).
Google ScholarÂ
Xu, K. et al. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm. Res. Off J. Eur. Histamine Res. Soc. Al62, 229–237 (2013).
Google ScholarÂ
Zhang, Y. et al. MicroRNA-30a-5p silencing polarizes macrophages toward M2 phenotype to alleviate cardiac injury following viral myocarditis by targeting SOCS1. Am. J. Physiol. Heart Circ. Physiol.320, H1348–H1360 (2021).
Google ScholarÂ
Mortazavi-Jahromi, S. S., Farazmand, A., Motamed, N., Navabi, S. S. & Mirshafiey, A. Effects of guluronic acid (G2013) on SHIP1, SOCS1 induction and related molecules in TLR4 signaling pathway. Int. Immunopharmacol.55, 323–329 (2018).
Google ScholarÂ
Wang, D. et al. MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe Acute Pancreatitis. Front. Physiol.9, 686 (2018).
Google ScholarÂ
Lee, T. L., Yeh, J., Van Waes, C. & Chen, Z. Epigenetic modification of SOCS-1 differentially regulates STAT3 activation in response to interleukin-6 receptor and epidermal growth factor receptor signaling through JAK and/or MEK in head and neck squamous cell carcinomas. Mol. Cancer Ther.5, 8–19 (2006).
Google ScholarÂ
Gagnon, J., Ramanathan, S., Leblanc, C. & Ilangumaran, S. Regulation of IL-21 signaling by suppressor of cytokine signaling-1 (SOCS1) in CD8(+) T lymphocytes. Cell. Signal.19, 806–816 (2007).
Google ScholarÂ
Cheng, C. et al. SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages. Toxicol. Lett.225, 488–497 (2014).
Google ScholarÂ
Li, X., Tian, F. & Wang, F. Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-α and IL-1β in PBMCs. Int. J. Mol. Sci.14, 23910–23921 (2013).
Google ScholarÂ
Deretic, V. & Levine, B. Autophagy balances inflammation in innate immunity. Autophagy14, 243–251 (2018).
Google ScholarÂ
Netea-Maier, R. T., Plantinga, T. S., van de Veerdonk, F. L., Smit, J. W. & Netea, M. G. Modulation of inflammation by autophagy: consequences for human disease. Autophagy12, 245–260 (2016).
Google ScholarÂ
Cosin-Roger, J. et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat. Commun.8, 98 (2017).
Google ScholarÂ
Zhang, L. et al. Theaflavin-3,3’-Digallate ameliorates Collagen-Induced Arthritis through Regulation of Autophagy and Macrophage polarization. J. Inflamm. Res.16, 109–126 (2023).
Google ScholarÂ
Guo, X., Wang, Y., Zheng, D., Cheng, X. & Sun, Y. LncRNA-MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1. Brain Res.1763, 147436 (2021).
Google ScholarÂ
Zhu, H. et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy5, 816–823 (2009).
Google ScholarÂ
Song, S., Tan, J., Miao, Y., Li, M. & Zhang, Q. Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J. Cell. Physiol.232, 2977–2984 (2017).
Google ScholarÂ
Ghafouri-Fard, S., Azimi, T. & Taheri, M. Myocardial infarction Associated transcript (MIAT): review of its impact in the tumorigenesis. Biomed. Pharmacother Biomedecine Pharmacother133, 111040 (2021).
Google ScholarÂ
Dorrington, M. G. & Fraser, I. D. C. NF-κB Signaling in macrophages: Dynamics, Crosstalk, and Signal Integration. Front. Immunol.10, 705 (2019).
Google ScholarÂ
Zhou, M. et al. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine35, 345–360 (2018).
Google ScholarÂ
Nakagawa, R. et al. SOCS-1 participates in negative regulation of LPS responses. Immunity17, 677–687 (2002).
Google ScholarÂ