Monday, December 23, 2024
HomeRheumatoid ArthritisLow-frequency and rare genetic variants associated with rheumatoid arthritis risk

Low-frequency and rare genetic variants associated with rheumatoid arthritis risk

Random Image Popup


  • Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaziano, J. M. et al. Million veteran program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    PubMed 

    Google Scholar 

  • Denny, J. C. et al. The “All of Us” research program. N. Engl. J. Med. 381, 668–676 (2019).

    PubMed 

    Google Scholar 

  • Consortium, I. M. S. G. Low-frequency and rare-coding variation contributes to multiple sclerosis risk. Cell 175, 1679–1687.e1677 (2018).

    Google Scholar 

  • Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, A. et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 21, 1708–1718 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Curtis, D. Construction of an exome-wide risk score for schizophrenia based on a weighted burden test. Ann. Hum. Genet. 82, 11–22 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Biddinger, K. J. et al. Rare and common genetic variation underlying the risk of hypertrophic cardiomyopathy in a national biobank. JAMA Cardiol. 7, 715–722 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, C. F. et al. Genomic diagnosis of rare pediatric disease in the United Kingdom and Ireland. N. Engl. J. Med. 388, 1559–1571 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Whiffin, N. et al. The effect of LRRK2 loss-of-function variants in humans. Nat. Med. 26, 869–877 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Myasoedova, E., Davis, J., Matteson, E. L. & Crowson, C. S. Is the epidemiology of rheumatoid arthritis changing? Results from a population-based incidence study, 1985-2014. Ann. Rheum. Dis. 79, 440–444 (2020).

    PubMed 

    Google Scholar 

  • Frisell, T. et al. Familial risks and heritability of rheumatoid arthritis: role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 65, 2773–2782 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Svendsen, A. J. et al. On the origin of rheumatoid arthritis: the impact of environment and genes — a population based twin study. PLoS One 8, e57304 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stastny, P. Mixed lymphocyte cultures in rheumatoid arthritis. J. Clin. Invest. 57, 1148–1157 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gough, S. C. & Simmonds, M. J. The HLA region and autoimmune disease: associations and mechanisms of action. Curr. Genomics 8, 453–465 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulski, J. K., Suzuki, S. & Shiina, T. Human leukocyte antigen super-locus: nexus of genomic supergenes, SNPs, indels, transcripts, and haplotypes. Hum. Genome Var. 9, 49 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rieck, M. et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J. Immunol. 179, 4704–4710 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661-678 (2007).

  • Ishigaki, K. et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat. Genet. 54, 1640–1651 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sparks, J. A. et al. Improved performance of epidemiologic and genetic risk models for rheumatoid arthritis serologic phenotypes using family history. Ann. Rheum. Dis. 74, 1522–1529 (2015).

    PubMed 

    Google Scholar 

  • Rostami, S., Hoff, M., Brown, M. A., Hveem, K. & Videm, V. Comparison of methods to construct a genetic risk score for prediction of rheumatoid arthritis in the population-based Nord-Trondelag Health Study, Norway. Rheumatology 59, 1743–1751 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapaport, F. et al. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc. Natl Acad. Sci. USA 118, e2001248118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet. 95, 5–23 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Momozawa, Y. & Mizukami, K. Unique roles of rare variants in the genetics of complex diseases in humans. J. Hum. Genet. 66, 11–23 (2021).

    PubMed 

    Google Scholar 

  • Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One 10, e0122271 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • National Human Genome Research Institute. Human Genomic Variation. https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genomic-variation (2023).

  • Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eichler, E. E. Genetic variation, comparative genomics, and the diagnosis of disease. N. Engl. J. Med. 381, 64–74 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Library of Medicine. Overview of Structural Variation. https://www.ncbi.nlm.nih.gov/dbvar/content/overview/ (2022).

  • International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  • Lelieveld, S. H., Spielmann, M., Mundlos, S., Veltman, J. A. & Gilissen, C. Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions. Hum. Mutat. 36, 815–822 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diogo, D. et al. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 92, 15–27 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, T., Chitnis, N., Monos, D. & Dinh, A. Next-generation sequencing technologies: an overview. Hum. Immunol. 82, 801–811 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gudmundsson, S. et al. Variant interpretation using population databases: lessons from gnomAD. Hum. Mutat. 43, 1012–1030 (2022).

    PubMed 

    Google Scholar 

  • Simpfendorfer, K. R. et al. Autoimmune disease-associated haplotypes of BLK exhibit lowered thresholds for B cell activation and expansion of Ig class-switched B cells. Arthritis Rheumatol. 67, 2866–2876 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genom. 2, 100168 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saevarsdottir, S. et al. Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. Ann. Rheum. Dis. 81, 1085–1095 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • González-Serna, D. et al. Association of a rare variant of the TNFSF13B gene with susceptibility to rheumatoid arthritis and systemic lupus erythematosus. Sci. Rep. 8, 8195 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitsunaga, S. et al. Exome sequencing identifies novel rheumatoid arthritis-susceptible variants in the BTNL2. J. Hum. Genet. 58, 210–215 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Mitsunaga, S. et al. Aggregation of rare/low-frequency variants of the mitochondria respiratory chain-related proteins in rheumatoid arthritis patients. J. Hum. Genet. 60, 449–454 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bang, S. Y. et al. Targeted exon sequencing fails to identify rare coding variants with large effect in rheumatoid arthritis. Arthritis Res. Ther. 16, 447 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pang Leong, K. et al. Missense variant in interleukin-6 signal transducer identified as susceptibility locus for rheumatoid arthritis in Chinese patients. Arch. Rheumatol. 36, 603–610 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pernaa, N. et al. Heterozygous premature termination in zinc-finger domain of Krüppel-like factor 2 gene associates with dysregulated immunity. Front. Immunol. 13, 819929 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren’s syndrome highlight T cell-initiated autoimmunity. Ann. Rheum. Dis. 79, 268–275 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Veyssiere, M. et al. A novel nonsense variant in SUPT20H gene associated with rheumatoid arthritis identified by whole exome sequencing of multiplex families. PLoS One 14, e0213387 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okada, Y. et al. Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene. PLoS One 9, e87645 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnett, F. C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    PubMed 

    Google Scholar 

  • Barbulescu, A. et al. Effectiveness of baricitinib and tofacitinib compared with bDMARDs in RA: results from a cohort study using nationwide Swedish register data. Rheumatology 61, 3952–3962 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal. Transduct. Target. Ther. 6, 402 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muromoto, R., Oritani, K. & Matsuda, T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J. Biol. Chem. 13, 1–14 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • López-López, S. et al. NOTCH4 exhibits anti-inflammatory activity in activated macrophages by interfering with interferon-γ and TLR4 signaling. Front. Immunol. 12, 734966 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, K. et al. The mammalian SKIV2L RNA exosome is essential for early B cell development. Sci. Immunol. 7, eabn2888 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsumoto, Y. et al. Tankyrase represses autoinflammation through the attenuation of TLR2 signaling. J. Clin. Invest. 132, e140869 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lapenna, A., Omar, I. & Berger, M. A novel spontaneous mutation in the TAP2 gene unravels its role in macrophage survival. Immunology 150, 432–443 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoff, N. P., Degrandi, D., Hengge, U., Pfeffer, K. & Wurthner, J. U. Carboxypeptidase D: a novel TGF-β target gene dysregulated in patients with lupus erythematosus. J. Clin. Immunol. 27, 568–579 (2007).

    PubMed 

    Google Scholar 

  • Wang, S., Wang, S., Li, H., Zhu, L. & Wang, Y. Inhibition of the TGF-β/Smads signaling pathway attenuates pulmonary fibrosis and induces anti-proliferative effect on synovial fibroblasts in rheumatoid arthritis. Int. J. Clin. Exp. Pathol. 12, 1835–1845 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xing, S. et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J. Exp. Med. 216, 847–866 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, K. R., Villadangos, J. A. & Mintern, J. D. Dendritic cell Flt3 — regulation, roles and repercussions for immunotherapy. Immunol. Cell Biol. 99, 962–971 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Fan, H. et al. Plasma TNFSF13B and TNFSF14 function as inflammatory indicators of severe adenovirus pneumonia in pediatric patients. Front. Immunol. 11, 614781 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Simpfendorfer, K. R. et al. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum. Mol. Genet. 21, 3918–3925 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris, A. P., Zeggini, E. & Lindgren, C. M. Identification of novel putative rheumatoid arthritis susceptibility genes via analysis of rare variants. BMC Proc. 3, S131 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowes, J. et al. Rare variation at the TNFAIP3 locus and susceptibility to rheumatoid arthritis. Hum. Genet. 128, 627–633 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franke, L. et al. Association analysis of copy numbers of FC-γ receptor genes for rheumatoid arthritis and other immune-mediated phenotypes. Eur. J. Hum. Genet. 24, 263–270 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carress, H., Lawson, D. J. & Elhaik, E. Population genetic considerations for using biobanks as international resources in the pandemic era and beyond. BMC Genomics 22, 351 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 6, 91 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, J. L. Genetic Association Study Power Calculator. University of Michigan http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html (2017).

  • Chung, C. P., Rohan, P., Krishnaswami, S. & McPheeters, M. L. A systematic review of validated methods for identifying patients with rheumatoid arthritis using administrative or claims data. Vaccine 31, K41–K61 (2013).

    PubMed 

    Google Scholar 

  • Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Xiao, R. & Boehnke, M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet. Epidemiol. 33, 453–462 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeggini, E. & Ioannidis, J. P. Meta-analysis in genome-wide association studies. Pharmacogenomics 10, 191–201 (2009).

    PubMed 

    Google Scholar 

  • Hunt, K. A. et al. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature 498, 232–235 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, S. H. et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat. Commun. 10, 2201 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhagwat, M. Searching NCBI’s dbSNP database. Curr. Protoc. Bioinformatics https://doi.org/10.1002/0471250953.bi0119s32 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kocher, J. P. et al. The Biological Reference Repository (BioR): a rapid and flexible system for genomics annotation. Bioinformatics 30, 1920–1922 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Münz, M. et al. CSN and CAVA: variant annotation tools for rapid, robust next-generation sequencing analysis in the clinical setting. Genome Med. 7, 76 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H. & Wang, K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 10, 1556–1566 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–d894 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • de Sainte Agathe, J. M. et al. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation. Hum. Genomics 17, 7 (2023).

    Google Scholar 

  • Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0720s76 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Wai, H. A. et al. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet. Med. 22, 1005–1014 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiel, L. et al. MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum. Mutat. 40, 1030–1038 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, X. et al. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat. Genet. 48, 4–6 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chattopadhyay, S. et al. High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc. Natl Acad. Sci. USA 106, 12412–12417 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ying, P. et al. Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk. Nat. Commun. 14, 5958 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    PubMed 

    Google Scholar 

  • GTEx Portal. Bulk tissue gene expression for PTPN22 (ENSG00000134242.15). https://gtexportal.org/home/gene/PTPN22 (2021).

  • Simmons, D. P. et al. SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Sci. Immunol. 7, eabf2846 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Institutes of Health. Accelerating Medicines Partnership (AMP). https://www.nih.gov/research-training/accelerating-medicines-partnership-amp#:~:text=Launched%20in%202014%2C%20the%20Accelerating,to%20transform%20the%20current%20model (2022).

  • The Arthritis and Autoimmune and Related Diseases Portal. Rheumatoid Arthritis Phase II (RA_PhaseII). ARK https://arkportal.synapse.org/Explore/Projects/DetailsPage?Project=RA_PhaseII (2024).

  • Kronzer, V. L. et al. Timing of sinusitis and other respiratory tract diseases and risk of rheumatoid arthritis. Semin. Arthritis Rheum. 52, 151937 (2022).

    PubMed 

    Google Scholar 

  • Kronzer, V. L., Crowson, C. S., Sparks, J. A., Vassallo, R. & Davis, J. M. III Investigating asthma, allergic disease, passive smoke exposure, and risk of rheumatoid arthritis. Arthritis Rheumatol. 71, 1217–1224 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • National Human Genome Research Institute. The Cost of Sequencing a Human Genome. https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost [online] (2021).

  • Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C. et al. Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis. Arthritis Res. Ther. 23, 38 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asquith, M. et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 71, 1642–1650 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • van Nies, J. A., Tsonaka, R., Gaujoux-Viala, C., Fautrel, B. & van der Helm-van Mil, A. H. Evaluating relationships between symptom duration and persistence of rheumatoid arthritis: does a window of opportunity exist? Results on the Leiden early arthritis clinic and ESPOIR cohorts. Ann. Rheum. Dis. 74, 806–812 (2015).

    PubMed 

    Google Scholar 

  • Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug. Discov. 13, 419–431 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Koskinas, K. C. et al. Eligibility for PCSK9 inhibitors based on the 2019 ESC/EAS and 2018 ACC/AHA guidelines. Eur. J. Prev. Cardiol. 28, 59–65 (2021).

    PubMed 

    Google Scholar 

  • Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Hasni, S. A. et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 12, 3391 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments