Sunday, August 24, 2025
HomeRheumatoid ArthritisMore than a leaky gut: how gut priming shapes arthritis

More than a leaky gut: how gut priming shapes arthritis


  • Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2, e01202 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nii, T. et al. Genomic repertoires linked with pathogenic potency of arthritogenic Prevotella copri isolated from the gut of patients with rheumatoid arthritis. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2022-222881 (2023).

    PubMed 

    Google Scholar 

  • Hong, M. et al. Fusobacterium nucleatum aggravates rheumatoid arthritis through FadA-containing outer membrane vesicles. Cell Host Microbe 31, 798–810.e7 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 8, 43 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, K. N. et al. Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes. Sci. Transl. Med. 15, eabn4722 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Breban, M. et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 76, 1614–1622 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Berland, M. et al. Both disease activity and HLA-B27 status are associated with gut microbiome dysbiosis in spondyloarthritis patients. Arthritis Rheumatol. 75, 41–52 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Tito, R. Y. et al. Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 69, 114–121 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Stoll, M. L. et al. The faecal microbiota is distinct in HLA-B27+ ankylosing spondylitis patients versus HLA-B27+ healthy controls. Clin. Exp. Rheumatol. 41, 1096–1104 (2023).

    PubMed 

    Google Scholar 

  • Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Viladomiu, M. et al. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 9, eaaf9655 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Holers, V. M. et al. Distinct mucosal endotypes as initiators and drivers of rheumatoid arthritis. Nat. Rev. Rheumatol. 20, 601–613 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Zaiss, M. M., Joyce Wu, H.-J., Mauro, D., Schett, G. & Ciccia, F. The gut–joint axis in rheumatoid arthritis. Nat. Rev. Rheumatol. 17, 224–237 (2021).

    PubMed 

    Google Scholar 

  • Gracey, E. et al. Revisiting the gut-joint axis: links between gut inflammation and spondyloarthritis. Nat. Rev. Rheumatol. 16, 415–433 (2020).

    PubMed 

    Google Scholar 

  • Saha, K., Zhou, Y. & Turner, J. R. Tight junction regulation, intestinal permeability, and mucosal immunity in gastrointestinal health and disease. Curr. Opin. Gastroenterol. 41, 46–53 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Audo, R. et al. Rheumatoid arthritis is associated with increased gut permeability and bacterial translocation that are reversed by inflammation control. Rheumatology 62, 1264–1271 (2023).

    Google Scholar 

  • Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, A. P. et al. Enteropathogenic E. coli effectors EspF and Map independently disrupt tight junctions through distinct mechanisms involving transcriptional and post-transcriptional regulation. Sci. Rep. 8, 3719 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pradhan, S. et al. Tissue responses to Shiga toxin in human intestinal organoids. Cell Mol. Gastroenterol. Hepatol. 10, 171–190 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuhn, K. A. et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 11, 357–368 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Ey, B., Eyking, A., Gerken, G., Podolsky, D. K. & Cario, E. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury. J. Biol. Chem. 284, 22332–22343 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W., Xia, T. & Yu, X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm. Res. 64, 423–431 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Abraham, C., Abreu, M. T. & Turner, J. R. Pattern recognition receptor signaling and cytokine networks in microbial defenses and regulation of intestinal barriers: implications for inflammatory bowel disease. Gastroenterology 162, 1602–1616.e1606 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kuhn, K. A., Manieri, N. A., Liu, T. C. & Stappenbeck, T. S. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS ONE 9, e114195 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Akuzum, B. & Lee, J. Y. Context-dependent regulation of type17 immunity by microbiota at the intestinal barrier. Immune Netw. 22, e46 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Patnaude, L. et al. Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair. Life Sci. 271, 119195 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ciccia, F. et al. Interleukin-9 overexpression and Th9 polarization characterize the inflamed gut, the synovial tissue, and the peripheral blood of patients with psoriatic arthritis. Arthritis Rheumatol. 68, 1922–1931 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Jubair, W. K. et al. Modulation of inflammatory arthritis in mice by gut microbiota through mucosal inflammation and autoantibody generation. Arthritis Rheumatol. 70, 1220–1233 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hecquet, S. et al. Increased gut permeability and intestinal inflammation precede arthritis onset in the adjuvant-induced model of arthritis. Arthritis Res. Ther. 25, 95 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matei, D. E. et al. Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. Med. 2, 864–883.e9 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Seethaler, B. et al. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastrointest. Liver Physiol. 321, G11–G17 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Fasano, A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann. N. Y. Acad. Sci. 1258, 25–33 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ayyappan, P. et al. Heightened levels of antimicrobial response factors in patients with rheumatoid arthritis. Front. Immunol. 11, 427 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ajamian, M., Steer, D., Rosella, G. & Gibson, P. R. Serum zonulin as a marker of intestinal mucosal barrier function: may not be what it seems. PLoS ONE 14, e0210728 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bas, S., Gauthier, B. R., Spenato, U., Stingelin, S. & Gabay, C. CD14 is an acute-phase protein. J. Immunol. 172, 4470–4479 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, M., Fevre, C., Lavina, M., Disson, O. & Lecuit, M. Live imaging reveals listeria hijacking of E-Cadherin recycling as it crosses the intestinal barrier. Curr. Biol. 31, 1037–1047.e1034 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Knoop, K. A., McDonald, K. G., Kulkarni, D. H. & Newberry, R. D. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 65, 1100–1109 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lapthorne, S., Macsharry, J., Scully, P., Nally, K. & Shanahan, F. Differential intestinal M-cell gene expression response to gut commensals. Immunology 136, 312–324 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Gronke, K. et al. Translocating gut pathobiont Enterococcus gallinarum induces TH17 and IgG3 anti-RNA–directed autoimmunity in mouse and human. Sci. Transl. Med. 17, eadj6294 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Jochum, L. & Stecher, B. Label or concept — what is a pathobiont? Trends Microbiol. 28, 789–792 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Allert, S. et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio 9, e00915–e00918 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asquith, M., Elewaut, D., Lin, P. & Rosenbaum, J. T. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best. Pract. Res. Clin. Rheumatol. 28, 687–702 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gill, T. et al. Axial spondyloarthritis patients have altered mucosal IgA response to oral and fecal microbiota. Front. Immunol. 13, 965634 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol. 21, 739–751 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Fine, R. L., Manfredo Vieira, S., Gilmore, M. S. & Kriegel, M. A. Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes 11, 217–230 (2020).

    PubMed 

    Google Scholar 

  • Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Spadoni, I., Fornasa, G. & Rescigno, M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat. Rev. Immunol. 17, 761–773 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Balmer, M. L. et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl. Med. 6, 237ra266 (2014).

    Google Scholar 

  • Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943.e11 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakamoto, N. et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat. Microbiol. 4, 492–503 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zeng, M. Y. et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44, 647–658 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maldarelli, G. A. et al. IgG-seq identifies immune-reactive enteric bacteria in Crohn’s disease with spondyloarthritis. Gut Microbes 17, 2464221 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mårdh, P. A., Nilsson, F. J. & Bjelle, A. Mycoplasmas and bacteria in synovial fluid from patients with arthritis. Ann. Rheum. Dis. 32, 319–325 (1973).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, T. et al. Bacterial components in the synovial tissue of patients with advanced rheumatoid arthritis or osteoarthritis: analysis with gas chromatography-mass spectrometry and pan-bacterial polymerase chain reaction. Arthritis Care Res. 49, 328–334 (2003).

    CAS 

    Google Scholar 

  • Zhao, Y. et al. Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients. Sci. Rep. 8, 14305 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammad, D. B. M., Liyanapathirana, V. & Tonge, D. P. Molecular characterisation of the synovial fluid microbiome in rheumatoid arthritis patients and healthy control subjects. PLoS ONE 14, e0225110 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chriswell, M. E. et al. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci. Transl. Med. 14, eabn5166 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 607, 563–570 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maeda, Y. et al. Mucosal innate immune activation as the trigger to Prevotella species-induced arthritis in genetically resistant mice. Preprint at bioRxiv https://doi.org/10.1101/2025.03.18.643707 (2025).

  • Kuhn, K. A. & Stappenbeck, T. S. Peripheral education of the immune system by the colonic microbiota. Semin. Immunol. 25, 364–369 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Jeong, Y. et al. Therapeutic potential of a novel bifidobacterium identified through microbiome profiling of RA patients with different RF levels. Front. Immunol. 12, 736196 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ornelas, A., Dowdell, A. S., Lee, J. S. & Colgan, S. P. Microbial metabolite regulation of epithelial cell-cell interactions and barrier function. Cells 11, 944 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, J. et al. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. Sci. Adv. 8, eabm1511 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosser, E. C. et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 31, 837–851.e10 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinsson, K., Dürholz, K., Schett, G., Zaiss, M. M. & Kastbom, A. Higher serum levels of short-chain fatty acids are associated with non-progression to arthritis in individuals at increased risk of RA. Ann. Rheum. Dis. 81, 445–447 (2022).

    PubMed 

    Google Scholar 

  • Paine, A. et al. Dysregulation of bile acids, lipids, and nucleotides in psoriatic arthritis revealed by unbiased profiling of serum metabolites. Arthritis Rheumatol. 75, 53–63 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Lucas, S. et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun. 9, 55 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Asquith, M. et al. Intestinal metabolites are profoundly altered in the context of HLA–B27 expression and functionally modulate disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 69, 1984–1995 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dürholz, K. et al. Dietary short-term fiber interventions in arthritis patients increase systemic SCFA levels and regulate inflammation. Nutrients 12, 3207 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Häger, J. et al. The role of dietary fiber in rheumatoid arthritis patients: a feasibility study. Nutrients 11, 2392 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bansal, T., Alaniz, R. C., Wood, T. K. & Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl Acad. Sci. USA 107, 228–233 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Alexeev, E. E. et al. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am. J. Pathol. 188, 1183–1194 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, S. A., Fu, J. & Chang, P. V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 117, 19376–19387 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moulin, D. et al. Counteracting tryptophan metabolism alterations as a new therapeutic strategy for rheumatoid arthritis. Ann. Rheum. Dis. 83, 312–323 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Stoll, M. L. et al. Fecal metabolomics in pediatric spondyloarthritis implicate decreased metabolic diversity and altered tryptophan metabolism as pathogenic factors. Genes. Immun. 17, 400–405 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berlinberg, A. J. et al. Multi ‘omics analysis of intestinal tissue in ankylosing spondylitis identifies alterations in the tryptophan metabolism pathway. Front. Immunol. 12, 587119 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Ye, X. et al. Dual role of indoles derived from intestinal microbiota on human health. Front. Immunol. 13, 903526 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seymour, B. J. et al. Microbiota-dependent indole production stimulates the development of collagen-induced arthritis in mice. J. Clin. Investig. 134, e167671 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nieminen, P. et al. Metabolomics of synovial fluid and infrapatellar fat pad in patients with osteoarthritis or rheumatoid arthritis. Inflammation 45, 1101–1117 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Coras, R. et al. Baseline microbiome and metabolome are associated with response to ITIS diet in an exploratory trial in patients with rheumatoid arthritis. Clin. Transl. Med. 12, e959 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefferts, A. R., Norman, E., Claypool, D. J., Kantheti, U. & Kuhn, K. A. Cytokine competent gut-joint migratory T cells contribute to inflammation in the joint. Front. Immunol. 13, 932393 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galván-Peña, S., Zhu, Y., Hanna, B. S., Mathis, D. & Benoist, C. A dynamic atlas of immunocyte migration from the gut. Sci. Immunol. 9, eadi0672 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradley, C. P. et al. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe 22, 697–704.e4 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubash, S. et al. Emergence of severe spondyloarthropathy-related entheseal pathology following successful vedolizumab therapy for inflammatory bowel disease. Rheumatology 58, 963–968 (2018).

    Google Scholar 

  • Diaz, L. I. et al. Vedolizumab-induced de novo extraintestinal manifestations. Gastroenterol. Hepatol. 16, 75–81 (2020).

    Google Scholar 

  • Naskar, D., Teng, F., Felix, K. M., Bradley, C. P. & Wu, H.-J. J. Synthetic retinoid AM80 ameliorates lung and arthritic autoimmune responses by inhibiting T follicular helper and Th17 cell responses. J. Immunol. 198, 1855–1864 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brockmann, L. et al. Intestinal microbiota-specific Th17 cells possess regulatory properties and suppress effector T cells via c-MAF and IL-10. Immunity 56, 2719–2735.e7 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schnell, A. et al. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 184, 6281–6298.e23 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, C. et al. Gut-licensed β7+ CD4+ T cells contribute to progressive retinal ganglion cell damage in glaucoma. Sci. Transl. Med. 15, eadg1656 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Krebs, C. F. et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45, 1078–1092 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teng, F. et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 44, 875–888 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J.-Y. et al. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity 42, 252–264 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, T. et al. Aberrant T follicular helper cells generated by TH17 cell plasticity in the gut promote extraintestinal autoimmunity. Nat. Immunol. 26, 790–804 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Breitfeld, D. et al. Follicular B helper T cells express Cxc chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cinamon, G. et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat. Immunol. 5, 713–720 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, W. K. et al. Expression of T follicular helper lymphocytes with different subsets and analysis of serum IL-6, IL-17, TGF-β and MMP-3 contents in patients with rheumatoid arthritis. Eur. Rev. Med. Pharmacol. Sci. 23, 61–69 (2019).

    PubMed 

    Google Scholar 

  • Khunsri, T. et al. Activation of circulating TFH17 cells associated with activated naive and double negative 2 B cell expansion, and disease activity in systemic lupus erythematosus patients. Arthritis Res. Ther. 26, 159 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J. et al. Increased circulating Tfh17 and PD-1+Tfh cells are associated with autoantibodies in Hashimoto’s thyroiditis. Autoimmunity 51, 352–359 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Che, Y. et al. Circulating memory T follicular helper subsets, Tfh2 and Tfh17, participate in the pathogenesis of Guillain-Barré syndrome. Sci. Rep. 6, 20963 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lycke, N. Y. & Bemark, M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol. 10, 1361–1374 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40, 248–261 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Stephens, W. Z. et al. Epithelial-myeloid exchange of MHC class II constrains immunity and microbiota composition. Cell Rep. 37, 109916 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eshleman, E. M. et al. Intestinal epithelial HDAC3 and MHC class II coordinate microbiota-specific immunity. J. Clin. Invest. 133, e162190 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Demoruelle, M. K. et al. Antibody responses to citrullinated and noncitrullinated antigens in the sputum of subjects with rheumatoid arthritis and subjects at risk for development of rheumatoid arthritis. Arthritis Rheumatol. 70, 516–527 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kinslow, J. D. et al. Elevated IgA plasmablast levels in subjects at risk of developing rheumatoid arthritis. Arthritis Rheumatol. 68, 2372–2383 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhuyan, Z. A. et al. Genetically encoded Runx3 and CD4+ intestinal epithelial lymphocyte deficiencies link SKG mouse and human predisposition to spondyloarthropathy. Clin. Immunol. 247, 109220 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Regner, E. H. et al. Functional intraepithelial lymphocyte changes in inflammatory bowel disease and spondyloarthritis have disease specific correlations with intestinal microbiota. Arthritis Res. Ther. 20, 149 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, Y. et al. Short-chain fatty acids regulate B cells differentiation via the FFA2 receptor to alleviate rheumatoid arthritis. Br. J. Pharmacol. 179, 4315–4329 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhai, Y. et al. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 379, eabg2482 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Kyriakidi, M., Vetsika, E. K., Fragoulis, G. E., Tektonidou, M. & Sfikakis, P. P. Identification and clinical correlation of circulating MAIT, γδ T, ILC3, and pre-inflammatory mesenchymal cells in patients with rheumatoid arthritis and spondyloarthritis. Mediterr. J. Rheumatol. 35, 312–315 (2024).

    PubMed 

    Google Scholar 

  • Koppejan, H. et al. Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res. Ther. 21, 3 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. et al. TNFɑ and IL-1β in the synovial fluid facilitate mucosal-associated invariant T (MAIT) cell migration. Cytokine 99, 91–98 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Nagafuchi, Y. et al. Enhanced gut homing receptor expression of unswitched memory B cells in rheumatoid arthritis. Clin. Exp. Rheumatol. 35, 354–355 (2017).

    PubMed 

    Google Scholar 

  • Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments