Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–18. https://doi.org/10.1038/s41590-020-00816-x (2021).
Google Scholar
Weyand, C. M. & Goronzy, J. J. Immunometabolism in the development of rheumatoid arthritis. Immunol. Rev. 294, 177–187. https://doi.org/10.1111/imr.12838 (2020).
Google Scholar
Babaahmadi, M. et al. Rheumatoid arthritis: The old issue, the new therapeutic approach. Stem Cell Res. Ther. 14, 268. https://doi.org/10.1186/s13287-023-03473-7 (2023).
Google Scholar
van der Woude, D. & van der Helm-van Mil, A. H. M. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 32, 174–187. https://doi.org/10.1016/j.berh.2018.10.005 (2018).
Google Scholar
Black, R. J. et al. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 5, e594–e610. https://doi.org/10.1016/s2665-9913(23)00211-4 (2023).
Google Scholar
Schattner, A. The cardiovascular burden of rheumatoid arthritis—implications for treatment. Am. J. Med. 136, 1143–1146. https://doi.org/10.1016/j.amjmed.2023.09.004 (2023).
Google Scholar
Hansildaar, R. et al. Cardiovascular risk in inflammatory arthritis: Rheumatoid arthritis and gout. Lancet Rheumatol. 3, e58–e70. https://doi.org/10.1016/s2665-9913(20)30221-6 (2021).
Google Scholar
DeMizio, D. J. & Geraldino-Pardilla, L. B. Autoimmunity and inflammation link to cardiovascular disease risk in rheumatoid arthritis. Rheumatol. Ther. 7, 19–33. https://doi.org/10.1007/s40744-019-00189-0 (2020).
Google Scholar
Zhao, E., Cheng, Y., Yu, C., Li, H. & Fan, X. The systemic immune-inflammation index was non-linear associated with all-cause mortality in individuals with nonalcoholic fatty liver disease. Ann. Med. 55, 2197652. https://doi.org/10.1080/07853890.2023.2197652 (2023).
Google Scholar
Cao, Y. et al. Association of systemic immune inflammatory index with all-cause and cause-specific mortality in hypertensive individuals: Results from NHANES. Front. Immunol. 14, 1087345. https://doi.org/10.3389/fimmu.2023.1087345 (2023).
Google Scholar
Hartwell, M. L., Khojasteh, J., Wetherill, M. S., Croff, J. M. & Wheeler, D. Using structural equation modeling to examine the influence of social, behavioral, and nutritional variables on health outcomes based on NHANES data: Addressing complex design, nonnormally distributed variables, and missing information. Curr. Dev. Nutr. 3, nzz010. https://doi.org/10.1093/cdn/nzz010 (2019).
Google Scholar
Liu, B., Wang, J., Li, Y. Y., Li, K. P. & Zhang, Q. The association between systemic immune-inflammation index and rheumatoid arthritis: Evidence from NHANES 1999–2018. Arthritis Res. Ther. 25, 34. https://doi.org/10.1186/s13075-023-03018-6 (2023).
Google Scholar
Zhou, E., Wu, J., Zhou, X. & Yin, Y. The neutrophil-lymphocyte ratio predicts all-cause and cardiovascular mortality among U.S. adults with rheumatoid arthritis: Results from NHANES 1999–2020. Front. Immunol. 14, 1309835. https://doi.org/10.3389/fimmu.2023.1309835 (2023).
Google Scholar
Brämer, G. R. International statistical classification of diseases and related health problems. Tenth revision. World Health Stat. Q. Rapp. Trimest. Stat. Sanit. Mond. 41, 32–36 (1988).
Shrivastava, A. K. & Pandey, A. Inflammation and rheumatoid arthritis. J. Physiol. Biochem. 69, 335–347. https://doi.org/10.1007/s13105-012-0216-5 (2013).
Google Scholar
Dessein, P. H. et al. Traditional and nontraditional cardiovascular risk factors are associated with atherosclerosis in rheumatoid arthritis. J. Rheumatol. 32, 435–442 (2005).
Google Scholar
Dessein, P. H., Norton, G. R., Woodiwiss, A. J., Joffe, B. I. & Wolfe, F. Influence of nonclassical cardiovascular risk factors on the accuracy of predicting subclinical atherosclerosis in rheumatoid arthritis. J. Rheumatol. 34, 943–951 (2007).
Google Scholar
O’Neil, L. J. et al. Neutrophil extracellular trap-associated carbamylation and histones trigger osteoclast formation in rheumatoid arthritis. Ann. Rheum. Dis. 82, 630–638. https://doi.org/10.1136/ard-2022-223568 (2023).
Google Scholar
Fresneda Alarcon, M., McLaren, Z. & Wright, H. L. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: Same foe different M.O. Front. Immunol. 12, 649693. https://doi.org/10.3389/fimmu.2021.649693 (2021).
Google Scholar
Zhang, L., Yuan, Y., Xu, Q., Jiang, Z. & Chu, C. Q. Contribution of neutrophils in the pathogenesis of rheumatoid arthritis. J. Biomed. Res. 34, 86–93. https://doi.org/10.7555/jbr.33.20190075 (2019).
Google Scholar
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science (New York, NY) 303, 1532–1535. https://doi.org/10.1126/science.1092385 (2004).
Google Scholar
Apel, F., Zychlinsky, A. & Kenny, E. F. The role of neutrophil extracellular traps in rheumatic diseases. Nat. Rev. Rheumatol. 14, 467–475. https://doi.org/10.1038/s41584-018-0039-z (2018).
Google Scholar
Carmona-Rivera, C. et al. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight https://doi.org/10.1172/jci.insight.139388 (2020).
Google Scholar
Tolboom, T. C. et al. Invasiveness of fibroblast-like synoviocytes is an individual patient characteristic associated with the rate of joint destruction in patients with rheumatoid arthritis. Arthritis Rheum. 52, 1999–2002. https://doi.org/10.1002/art.21118 (2005).
Google Scholar
Corsiero, E., Pratesi, F., Prediletto, E., Bombardieri, M. & Migliorini, P. NETosis as source of autoantigens in rheumatoid arthritis. Front. Immunol. 7, 485. https://doi.org/10.3389/fimmu.2016.00485 (2016).
Google Scholar
Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra140. https://doi.org/10.1126/scitranslmed.3005580 (2013).
Google Scholar
O’Neil, L. J. & Kaplan, M. J. Neutrophils in rheumatoid arthritis: Breaking immune tolerance and fueling disease. Trends Mol. Med. 25, 215–227. https://doi.org/10.1016/j.molmed.2018.12.008 (2019).
Google Scholar
Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 593–601. https://doi.org/10.1038/nrrheum.2014.80 (2014).
Google Scholar
Cecchi, I. et al. Neutrophils: Novel key players in rheumatoid arthritis. Current and future therapeutic targets. Autoimmun. Rev. 17, 1138–1149. https://doi.org/10.1016/j.autrev.2018.06.006 (2018).
Google Scholar
Assi, L. K. et al. Tumor necrosis factor alpha activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis Rheum. 56, 1776–1786. https://doi.org/10.1002/art.22697 (2007).
Google Scholar
Tanaka, S. Emerging anti-osteoclast therapy for rheumatoid arthritis. J. Orthop. Sci. 23, 717–721. https://doi.org/10.1016/j.jos.2018.06.001 (2018).
Google Scholar
Wei, F., Chang, Y. & Wei, W. The role of BAFF in the progression of rheumatoid arthritis. Cytokine 76, 537–544. https://doi.org/10.1016/j.cyto.2015.07.014 (2015).
Google Scholar
Chakravarti, A., Raquil, M. A., Tessier, P. & Poubelle, P. E. Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 114, 1633–1644. https://doi.org/10.1182/blood-2008-09-178301 (2009).
Google Scholar
Baici, A., Salgam, P., Cohen, G., Fehr, K. & Böni, A. Action of collagenase and elastase from human polymorphonuclear leukocytes on human articular cartilage. Rheumatol. Int. 2, 11–16. https://doi.org/10.1007/bf00541264 (1982).
Google Scholar
Fernandes, R. M., da Silva, N. P. & Sato, E. I. Increased myeloperoxidase plasma levels in rheumatoid arthritis. Rheumatol. Int. 32, 1605–1609. https://doi.org/10.1007/s00296-011-1810-5 (2012).
Google Scholar
Odobasic, D. et al. Endogenous myeloperoxidase is a mediator of joint inflammation and damage in experimental arthritis. Arthritis Rheumatol. (Hoboken, NJ) 66, 907–917. https://doi.org/10.1002/art.38299 (2014).
Google Scholar
Mutua, V. & Gershwin, L. J. A review of neutrophil extracellular traps (NETs) in disease: Potential anti-NETs therapeutics. Clin. Rev. Allergy Immunol. 61, 194–211. https://doi.org/10.1007/s12016-020-08804-7 (2021).
Google Scholar
Olumuyiwa-Akeredolu, O. O., Page, M. J., Soma, P. & Pretorius, E. Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat. Rev. Rheumatol. 15, 237–248. https://doi.org/10.1038/s41584-019-0187-9 (2019).
Google Scholar
Jiang, S. Z., To, J. L., Hughes, M. R., McNagny, K. M. & Kim, H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front. Immunol. 13, 977828. https://doi.org/10.3389/fimmu.2022.977828 (2022).
Google Scholar
Farr, M., Wainwright, A., Salmon, M., Hollywell, C. A. & Bacon, P. A. Platelets in the synovial fluid of patients with rheumatoid arthritis. Rheumatol. Int. 4, 13–17. https://doi.org/10.1007/bf00683878 (1984).
Google Scholar
Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science (New York, NY) 327, 580–583. https://doi.org/10.1126/science.1181928 (2010).
Google Scholar
Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255. https://doi.org/10.1111/j.0105-2896.2009.00859.x (2010).
Google Scholar
Liu, W. et al. Sinomenine inhibits the progression of rheumatoid arthritis by regulating the secretion of inflammatory cytokines and monocyte/macrophage subsets. Front. Immunol. 9, 2228. https://doi.org/10.3389/fimmu.2018.02228 (2018).
Google Scholar
García-Vicuña, R. et al. CC and CXC chemokine receptors mediate migration, proliferation, and matrix metalloproteinase production by fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Rheum. 50, 3866–3877. https://doi.org/10.1002/art.20615 (2004).
Google Scholar
England, B. R., Thiele, G. M., Anderson, D. R. & Mikuls, T. R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ (Clin. Res. Ed.) 361, k1036. https://doi.org/10.1136/bmj.k1036 (2018).
Google Scholar
Fragoulis, G. E., Panayotidis, I. & Nikiphorou, E. Cardiovascular risk in rheumatoid arthritis and mechanistic links: From pathophysiology to treatment. Curr. Vasc. Pharmacol. 18, 431–446. https://doi.org/10.2174/1570161117666190619143842 (2020).
Google Scholar