Wednesday, April 30, 2025
HomeRheumatoid ArthritisDNA methylome biomarkers of rheumatoid arthritis-associated interstitial lung disease reflecting lung fibrosis...

DNA methylome biomarkers of rheumatoid arthritis-associated interstitial lung disease reflecting lung fibrosis pathways, an exploratory case–control study


  • Koduri, G. & Solomon, J. J. Identification, monitoring, and management of rheumatoid arthritis-associated interstitial lung disease. Arthritis Rheumatol. 75(12), 2067–2077 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Matson S, Lee J, Eickelberg O: Two sides of the same coin? A review of the similarities and differences between idiopathic pulmonary fibrosis and rheumatoid arthritis-associated interstitial lung disease. Eur Respir J 2021, 57(5).

  • Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Juge, P. A. et al. Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis. Eur. Respir. J. 49(5), 1602314 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Juge, P. A. et al. MUC5B promoter variant and rheumatoid arthritis with interstitial lung disease. N. Engl. J. Med. 379(23), 2209–2219 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ehrlich, M. DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics 14(12), 1141–1163 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20(10), 590–607 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, Z. & Liu, Y. DNA methylation in human diseases. Genes Dis. 5(1), 1–8 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leenen, F. A., Muller, C. P. & Turner, J. D. DNA methylation: Conducting the orchestra from exposure to phenotype?. Clin Epigenet. 8(1), 92 (2016).

    Article 

    Google Scholar 

  • Ospelt, C., Gay, S. & Klein, K. Epigenetics in the pathogenesis of RA. Semin. Immunopathol. 39(4), 409–419 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7(1), 11849 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72(1), 110–117 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karouzakis, E. et al. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci. Rep. 8(1), 7370 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de la Calle-Fabregat, C. et al. The synovial and blood monocyte DNA methylomes mirror prognosis, evolution, and treatment in early arthritis. JCI Insight 7(9), e158783 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez-Ubreva, J. et al. Inflammatory cytokines shape a changing DNA methylome in monocytes mirroring disease activity in rheumatoid arthritis. Ann. Rheum. Dis. 78(11), 1505–1516 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de la Calle-Fabregat, C. et al. Prediction of the progression of undifferentiated arthritis to rheumatoid arthritis using DNA methylation profiling. Arthritis Rheumatol. 73(12), 2229–2239 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Adams, C. et al. Identification of cell-specific differential DNA methylation associated with methotrexate treatment response in rheumatoid arthritis. Arthritis Rheumatol. 75(7), 1088–1097 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, H. et al. Rheumatoid arthritis-associated DNA methylation sites in peripheral blood mononuclear cells. Ann. Rheum. Dis. 78(1), 36–42 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31(2), 142–147 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salas, L. A. et al. Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nat. Commun. 13(1), 761 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214(8), 2387–2404 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen, R. J. et al. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 201(5), 564–574 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allen, R. J. et al. Genome-wide association study across five cohorts identifies five novel loci associated with idiopathic pulmonary fibrosis. Thorax 77(8), 829–833 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Peljto, A. L. et al. Idiopathic pulmonary fibrosis is associated with common genetic variants and limited rare variants. Am. J. Respir. Crit. Care Med. 207(9), 1194–1202 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, D. et al. Rare and common variants in KIF15 contribute to genetic risk of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 206(1), 56–69 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monaghan-Benson, E., Wittchen, E. S., Doerschuk, C. M. & Burridge, K. A Rnd3/p190RhoGAP pathway regulates RhoA activity in idiopathic pulmonary fibrosis fibroblasts. Mol. Biol. Cell 29(18), 2165–2175 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsou, P. S., Haak, A. J., Khanna, D. & Neubig, R. R. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: Focus on Rho GTPase-regulated gene transcription. Am. J. Physiol. Cell Physiol. 307(1), C2-13 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren, X. & Kuan, P. F. methylGSA: a Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics 35(11), 1958–1959 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beyer, C. et al. Activation of liver X receptors inhibits experimental fibrosis by interfering with interleukin-6 release from macrophages. Ann. Rheum. Dis. 74(6), 1317–1324 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hernandez-Hernandez, I. et al. Endogenous LXR signaling controls pulmonary surfactant homeostasis and prevents lung inflammation. Cell. Mol. Life Sci. 81(1), 287 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shichino, S. et al. Transcriptome network analysis identifies protective role of the LXR/SREBP-1c axis in murine pulmonary fibrosis. JCI Insight 4(1), e122163 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ito, A. et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Elife 4, e08009 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, R., Wuerch, E., Yong, V. W. & Xue, M. LXR agonism for CNS diseases: Promises and challenges. J. Neuroinflam. 21(1), 97 (2024).

    Article 
    CAS 

    Google Scholar 

  • Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet 19(6), 371–384 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis–a common pathway to organ injury and failure. N. Engl. J. Med. 372(12), 1138–1149 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Y. et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1(20), e90558 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DePianto, D. J. et al. Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight 6(8), e143626 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakamura, Y. et al. A protective effect of pirfenidone in lung fibroblast-endothelial cell network via inhibition of Rho-Kinase activity. Biomedicines 11(8), 2259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knipe, R. S. et al. The Rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 58(4), 471–481 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chircop, M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 5, e29770 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bilotta, M. T., Petillo, S., Santoni, A. & Cippitelli, M. Liver X receptors: Regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front. Immunol. 11, 584303 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53(9), 1311–1321 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541(7635), 81–86 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Spencer, D. H. et al. CpG Island hypermethylation mediated by DNMT3A Is a consequence of AML progression. Cell 168(5), 801-816 e813 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62(9), 2569–2581 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Ho DE, Imai K, King G, Stuart EA: MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. Journal of Statistical Software 2011, 42(8).

  • Morante-Palacios, O. Interactive DNA methylation array analysis with ShinyEPICo. Methods Mol Biol 2624, 7–18 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aryee, M. J. et al. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30(10), 1363–1369 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fortin, J. P., Triche, T. J. Jr. & Hansen, K. D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 33(4), 558–560 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martorell-Marugan, J., Gonzalez-Rumayor, V. & Carmona-Saez, P. mCSEA: Detecting subtle differentially methylated regions. Bioinformatics 35(18), 3257–3262 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salas, L. A. et al. An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome Biol. 19(1), 64 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenacre, M. Compositional data analysis. Annu. Rev. Stat. Appl. 8(1), 271–299 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Zheng, S. C., Breeze, C. E., Beck, S. & Teschendorff, A. E. Identification of differentially methylated cell types in epigenome-wide association studies. Nat. Methods 15(12), 1059–1066 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahmani, E. et al. Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat. Commun. 10(1), 3417 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44(W1), W90-97 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, Z. & Hubschmann, D. simplifyEnrichment: A bioconductor package for clustering and visualizing functional enrichment results. Genom. Proteom. Bioinform. 21(1), 190–202 (2023).

    Article 

    Google Scholar 

  • Wang, G., Oh, D. H. & Dassanayake, M. GOMCL: A toolkit to cluster, evaluate, and extract non-redundant associations of Gene Ontology-based functions. BMC Bioinform. 21(1), 139 (2020).

    Article 

    Google Scholar 

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38(4), 576–589 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments