Koduri, G. & Solomon, J. J. Identification, monitoring, and management of rheumatoid arthritis-associated interstitial lung disease. Arthritis Rheumatol. 75(12), 2067–2077 (2023).
Google Scholar
Matson S, Lee J, Eickelberg O: Two sides of the same coin? A review of the similarities and differences between idiopathic pulmonary fibrosis and rheumatoid arthritis-associated interstitial lung disease. Eur Respir J 2021, 57(5).
Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).
Google Scholar
Juge, P. A. et al. Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis. Eur. Respir. J. 49(5), 1602314 (2017).
Google Scholar
Juge, P. A. et al. MUC5B promoter variant and rheumatoid arthritis with interstitial lung disease. N. Engl. J. Med. 379(23), 2209–2219 (2018).
Google Scholar
Ehrlich, M. DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics 14(12), 1141–1163 (2019).
Google Scholar
Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20(10), 590–607 (2019).
Google Scholar
Jin, Z. & Liu, Y. DNA methylation in human diseases. Genes Dis. 5(1), 1–8 (2018).
Google Scholar
Leenen, F. A., Muller, C. P. & Turner, J. D. DNA methylation: Conducting the orchestra from exposure to phenotype?. Clin Epigenet. 8(1), 92 (2016).
Google Scholar
Ospelt, C., Gay, S. & Klein, K. Epigenetics in the pathogenesis of RA. Semin. Immunopathol. 39(4), 409–419 (2017).
Google Scholar
Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7(1), 11849 (2016).
Google Scholar
Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72(1), 110–117 (2013).
Google Scholar
Karouzakis, E. et al. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci. Rep. 8(1), 7370 (2018).
Google Scholar
de la Calle-Fabregat, C. et al. The synovial and blood monocyte DNA methylomes mirror prognosis, evolution, and treatment in early arthritis. JCI Insight 7(9), e158783 (2022).
Google Scholar
Rodriguez-Ubreva, J. et al. Inflammatory cytokines shape a changing DNA methylome in monocytes mirroring disease activity in rheumatoid arthritis. Ann. Rheum. Dis. 78(11), 1505–1516 (2019).
Google Scholar
de la Calle-Fabregat, C. et al. Prediction of the progression of undifferentiated arthritis to rheumatoid arthritis using DNA methylation profiling. Arthritis Rheumatol. 73(12), 2229–2239 (2021).
Google Scholar
Adams, C. et al. Identification of cell-specific differential DNA methylation associated with methotrexate treatment response in rheumatoid arthritis. Arthritis Rheumatol. 75(7), 1088–1097 (2023).
Google Scholar
Zhu, H. et al. Rheumatoid arthritis-associated DNA methylation sites in peripheral blood mononuclear cells. Ann. Rheum. Dis. 78(1), 36–42 (2019).
Google Scholar
Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31(2), 142–147 (2013).
Google Scholar
Salas, L. A. et al. Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nat. Commun. 13(1), 761 (2022).
Google Scholar
Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214(8), 2387–2404 (2017).
Google Scholar
Allen, R. J. et al. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 201(5), 564–574 (2020).
Google Scholar
Allen, R. J. et al. Genome-wide association study across five cohorts identifies five novel loci associated with idiopathic pulmonary fibrosis. Thorax 77(8), 829–833 (2022).
Google Scholar
Peljto, A. L. et al. Idiopathic pulmonary fibrosis is associated with common genetic variants and limited rare variants. Am. J. Respir. Crit. Care Med. 207(9), 1194–1202 (2023).
Google Scholar
Zhang, D. et al. Rare and common variants in KIF15 contribute to genetic risk of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 206(1), 56–69 (2022).
Google Scholar
Monaghan-Benson, E., Wittchen, E. S., Doerschuk, C. M. & Burridge, K. A Rnd3/p190RhoGAP pathway regulates RhoA activity in idiopathic pulmonary fibrosis fibroblasts. Mol. Biol. Cell 29(18), 2165–2175 (2018).
Google Scholar
Tsou, P. S., Haak, A. J., Khanna, D. & Neubig, R. R. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: Focus on Rho GTPase-regulated gene transcription. Am. J. Physiol. Cell Physiol. 307(1), C2-13 (2014).
Google Scholar
Ren, X. & Kuan, P. F. methylGSA: a Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics 35(11), 1958–1959 (2019).
Google Scholar
Beyer, C. et al. Activation of liver X receptors inhibits experimental fibrosis by interfering with interleukin-6 release from macrophages. Ann. Rheum. Dis. 74(6), 1317–1324 (2015).
Google Scholar
Hernandez-Hernandez, I. et al. Endogenous LXR signaling controls pulmonary surfactant homeostasis and prevents lung inflammation. Cell. Mol. Life Sci. 81(1), 287 (2024).
Google Scholar
Shichino, S. et al. Transcriptome network analysis identifies protective role of the LXR/SREBP-1c axis in murine pulmonary fibrosis. JCI Insight 4(1), e122163 (2019).
Google Scholar
Ito, A. et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Elife 4, e08009 (2015).
Google Scholar
Zhang, R., Wuerch, E., Yong, V. W. & Xue, M. LXR agonism for CNS diseases: Promises and challenges. J. Neuroinflam. 21(1), 97 (2024).
Google Scholar
Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).
Google Scholar
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet 19(6), 371–384 (2018).
Google Scholar
Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis–a common pathway to organ injury and failure. N. Engl. J. Med. 372(12), 1138–1149 (2015).
Google Scholar
Xu, Y. et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1(20), e90558 (2016).
Google Scholar
DePianto, D. J. et al. Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight 6(8), e143626 (2021).
Google Scholar
Nakamura, Y. et al. A protective effect of pirfenidone in lung fibroblast-endothelial cell network via inhibition of Rho-Kinase activity. Biomedicines 11(8), 2259 (2023).
Google Scholar
Knipe, R. S. et al. The Rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 58(4), 471–481 (2018).
Google Scholar
Chircop, M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 5, e29770 (2014).
Google Scholar
Bilotta, M. T., Petillo, S., Santoni, A. & Cippitelli, M. Liver X receptors: Regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front. Immunol. 11, 584303 (2020).
Google Scholar
Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53(9), 1311–1321 (2021).
Google Scholar
Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541(7635), 81–86 (2017).
Google Scholar
Spencer, D. H. et al. CpG Island hypermethylation mediated by DNMT3A Is a consequence of AML progression. Cell 168(5), 801-816 e813 (2017).
Google Scholar
Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62(9), 2569–2581 (2010).
Google Scholar
Ho DE, Imai K, King G, Stuart EA: MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. Journal of Statistical Software 2011, 42(8).
Morante-Palacios, O. Interactive DNA methylation array analysis with ShinyEPICo. Methods Mol Biol 2624, 7–18 (2023).
Google Scholar
Aryee, M. J. et al. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30(10), 1363–1369 (2014).
Google Scholar
Fortin, J. P., Triche, T. J. Jr. & Hansen, K. D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 33(4), 558–560 (2017).
Google Scholar
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015).
Google Scholar
Martorell-Marugan, J., Gonzalez-Rumayor, V. & Carmona-Saez, P. mCSEA: Detecting subtle differentially methylated regions. Bioinformatics 35(18), 3257–3262 (2019).
Google Scholar
Salas, L. A. et al. An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome Biol. 19(1), 64 (2018).
Google Scholar
Greenacre, M. Compositional data analysis. Annu. Rev. Stat. Appl. 8(1), 271–299 (2021).
Google Scholar
Zheng, S. C., Breeze, C. E., Beck, S. & Teschendorff, A. E. Identification of differentially methylated cell types in epigenome-wide association studies. Nat. Methods 15(12), 1059–1066 (2018).
Google Scholar
Rahmani, E. et al. Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat. Commun. 10(1), 3417 (2019).
Google Scholar
Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44(W1), W90-97 (2016).
Google Scholar
Gu, Z. & Hubschmann, D. simplifyEnrichment: A bioconductor package for clustering and visualizing functional enrichment results. Genom. Proteom. Bioinform. 21(1), 190–202 (2023).
Google Scholar
Wang, G., Oh, D. H. & Dassanayake, M. GOMCL: A toolkit to cluster, evaluate, and extract non-redundant associations of Gene Ontology-based functions. BMC Bioinform. 21(1), 139 (2020).
Google Scholar
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38(4), 576–589 (2010).
Google Scholar