Thursday, October 30, 2025
HomeRheumatoid ArthritisImmune-cell profiling to guide stratification and treatment of patients with rheumatic diseases

Immune-cell profiling to guide stratification and treatment of patients with rheumatic diseases


  • Bray, C. et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ 115, 317–321 (2016).

    PubMed 

    Google Scholar 

  • Weinstein, A., Alexander, R. V. & Zack, D. J. A review of complement activation in SLE. Curr. Rheumatol. Rep. 23, 16 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanjabi, S. & Lear, S. New cytometry tools for immune monitoring during cancer immunotherapy. Cytom. B Clin. Cytom. 100, 10–18 (2021).

    CAS 

    Google Scholar 

  • Hartmann, F. J. & Bendall, S. C. Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat. Rev. Rheumatol. 16, 87–99 (2020).

    PubMed 

    Google Scholar 

  • Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single-cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).

    PubMed 

    Google Scholar 

  • Zhang, S., Li, X., Lin, J., Lin, Q. & Wong, K. C. Review of single-cell RNA-seq data clustering for cell-type identification and characterization. RNA 29, 517–530 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl. Med. 10, eaaq0305 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reshef, Y. A. et al. Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics. Nat. Biotechnol. 40, 355–363 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Stone, J. H. et al. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377, 317–328 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Devauchelle-Pensec, V. et al. Effect of tocilizumab on disease activity in patients with active polymyalgia rheumatica receiving glucocorticoid therapy: a randomized clinical trial. JAMA 328, 1053–1062 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dima, A., Opris, D., Jurcut, C. & Baicus, C. Is there still a place for erythrocyte sedimentation rate and C-reactive protein in systemic lupus erythematosus? Lupus 25, 1173–1179 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Aringer, M. Inflammatory markers in systemic lupus erythematosus. J. Autoimmun. 110, 102374 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Cooles, F. A. H. & Isaacs, J. D. The interferon gene signature as a clinically relevant biomarker in autoimmune rheumatic disease. Lancet Rheumatol. 4, e61–e72 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Lipsky, P. E. et al. Biological impact of iberdomide in patients with active systemic lupus erythematosus. Ann. Rheum. Dis. 81, 1136–1142 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Tanaka, H. et al. Extracting immunological and clinical heterogeneity across autoimmune rheumatic diseases by cohort-wide immunophenotyping. Ann. Rheum. Dis. 83, 242–252 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Burns, M. et al. Dysregulated CD38 expression on peripheral blood immune cell subsets in SLE. Int. J. Mol. Sci. 22, 2424 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katsuyama, E. et al. The CD38/NAD/SIRTUIN1/EZH2 axis mitigates cytotoxic CD8 T cell function and identifies patients with SLE prone to infections. Cell Rep. 30, 112–123.e4 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, R. et al. Clonally expanded CD38hi cytotoxic CD8 T cells define the T cell infiltrate in checkpoint inhibitor-associated arthritis. Sci. Immunol. 8, eadd1591 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bocharnikov, A. V. et al. PD-1hi CXCR5 T peripheral helper cells promote B cells responses in lupus via MAF and IL-21. JCI Insight 4, e130062 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • He, J. et al. Circulating precursor CCR7loPD-1hi CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39, 770–781 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, J., Yu, Y., Ma, J., Ren, C. & Chen, W. PD-1+CXCR5CD4+T cells are correlated with the severity of systemic lupus erythematosus. Rheumatology 58, 2188–2192 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Makiyama, A. et al. Expanded circulating peripheral helper T cells in systemic lupus erythematosus: association with disease activity and B cell differentiation. Rheumatology 58, 1861–1869 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jenks, S. A. et al. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739.e6 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marks, K. E. & Rao, D. A. T peripheral helper cells in autoimmune diseases. Immunol. Rev. 307, 191–202 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balog, J. et al. Comparative single-cell multiplex immunophenotyping of therapy-naive patients with rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus shed light on disease-specific composition of the peripheral immune system. Front. Immunol. 15, 1376933 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184, 3006–3021.e17 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Interleukin 17A and IL-17F expression and functional responses in rheumatoid arthritis and peripheral spondyloarthritis. J. Rheumatol. 47, 1606–1613 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Mease, P. J. Is there a role for rituximab in the treatment of spondyloarthritis and psoriatic arthritis? J. Rheumatol. 39, 2235–2237 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yager, N. et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann. Rheum. Dis. 80, 1559–1567 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fortea-Gordo, P. et al. Two populations of circulating PD-1hiCD4 T cells with distinct B cell helping capacity are elevated in early rheumatoid arthritis. Rheumatology 58, 1662–1673 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sowerby, J. M. & Rao, D. A. T cell-B cell interactions in human autoimmune diseases. Curr. Opin. Immunol. 93, 102539 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Povoleri, G. A. M. et al. Psoriatic and rheumatoid arthritis joints differ in the composition of CD8+ tissue-resident memory T cell subsets. Cell Rep. 42, 112514 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mease, P. J. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Qaiyum, Z., Gracey, E., Yao, Y. & Inman, R. D. Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann. Rheum. Dis. 78, 1566–1575 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Jonsson, A. H. et al. Granzyme K+ CD8 T cells form a core population in inflamed human tissue. Sci. Transl. Med. 14, eabo0686 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reece, R. J., Canete, J. D., Parsons, W. J., Emery, P. & Veale, D. J. Distinct vascular patterns of early synovitis in psoriatic, reactive, and rheumatoid arthritis. Arthritis Rheum. 42, 1481–1484 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Floudas, A. et al. Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis. Ann. Rheum. Dis. 81, 1224–1242 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Abji, F. et al. Proteinase-mediated macrophage signaling in psoriatic arthritis. Front. Immunol. 11, 629726 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Fragoulis, G. E. et al. Distinct innate and adaptive immunity phenotypic profile at the circulating single-cell level in psoriatic arthritis. Clin. Immunol. 253, 109679 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Li, B. et al. Differential immunological profiles in seronegative versus seropositive rheumatoid arthritis: Th17/Treg dysregulation and IL-4. Front. Immunol. 15, 1447213 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhamidipati, K. et al. Spatial patterning of fibroblast TGFβ signaling underlies treatment resistance in rheumatoid arthritis. Preprint at bioRxiv, https://doi.org/10.1101/2025.03.14.642821 (2025).

  • Naidoo, J. et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 26, 2375–2391 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghosh, N. & Bass, A. R. Rheumatic complications of immune checkpoint inhibitors. Rheum. Dis. Clin. North. Am. 48, 411–428 (2022).

    PubMed 

    Google Scholar 

  • Ghosh, N. et al. Identification of outcome domains in immune checkpoint inhibitor-induced inflammatory arthritis and polymyalgia rheumatica: a scoping review by the OMERACT irAE working group. Semin. Arthritis Rheum. 58, 152110 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. T. et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat. Commun. 13, 1970 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maschmeyer, P. et al. Antigen-driven PD-1+ TOX+ BHLHE40+ and PD-1+ TOX+ EOMES+ T lymphocytes regulate juvenile idiopathic arthritis in situ. Eur. J. Immunol. 51, 915–929 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Barturen, G., Beretta, L., Cervera, R., Van Vollenhoven, R. & Alarcón-Riquelme, M. E. Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 14, 75–93 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).

    PubMed 

    Google Scholar 

  • Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Dunlap, G. et al. Clonal associations between lymphocyte subsets and functional states in rheumatoid arthritis synovium. Nat. Commun. 15, 4991 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durham, L. E. et al. Substantive similarities between synovial fluid and synovial tissue t cells in inflammatory arthritis via single-cell RNA and T cell receptor sequencing. Arthritis Rheumatol. 76, 1594–1601 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Kubo, S. et al. Peripheral blood immunophenotypic diversity in patients with rheumatoid arthritis and its impact on therapeutic responsiveness. Ann. Rheum. Dis. 84, 210–220 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Goto, M. et al. Age-associated CD4+ T cells with B cell-promoting functions are regulated by ZEB2 in autoimmunity. Sci. Immunol. 9, eadk1643 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Horisberger, A. et al. Blood immunophenotyping identifies distinct kidney histopathology and outcomes in patients with lupus nephritis. J. Clin. Invest. https://doi.org/10.1172/jci181034 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasaki, T. et al. Clonal relationships between Tph and Tfh cells in patients with SLE and in murine lupus. Preprint at bioRxiv, https://doi.org/10.1101/2025.01.27.635189 (2025).

  • Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Billi, A. C. et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci. Transl. Med. 14, eabn2263 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunlap, G. S. et al. Single-cell transcriptomics reveals distinct effector profiles of infiltrating T cells in lupus skin and kidney. JCI Insight 7, e156341 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danaher, P. et al. Childhood-onset lupus nephritis is characterized by complex interactions between kidney stroma and infiltrating immune cells. Sci. Transl. Med. 16, eadl1666 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guthridge, J. M. et al. Adults with systemic lupus exhibit distinct molecular phenotypes in a cross-sectional study. eClinicalMedicine 20, 100291 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hubbard, E. L. et al. Analysis of transcriptomic features reveals molecular endotypes of SLE with clinical implications. Genome Med. 15, 84 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garantziotis, P. et al. Molecular taxonomy of systemic lupus erythematosus through data-driven patient stratification: molecular endotypes and cluster-tailored drugs. Front. Immunol. 13, 860726 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rincon-Arevalo, H. et al. Deep phenotyping of CD11c+ B cells in systemic autoimmunity and controls. Front. Immunol. 12, 635615 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wehr, C. et al. A new CD21low B cell population in the peripheral blood of patients with SLE. Clin. Immunol. 113, 161–171 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Kubo, S. et al. Peripheral immunophenotyping identifies three subgroups based on T cell heterogeneity in lupus patients. Arthritis Rheumatol. 69, 2029–2037 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sasaki, T. et al. Longitudinal immune cell profiling in early systemic lupus erythematosus. Arthritis Rheumatol. 74, 1808–1821 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, J. Y. et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 67, 988–999 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jenks, S. A., Cashman, K. S., Woodruff, M. C., Lee, F. E. & Sanz, I. Extrafollicular responses in humans and SLE. Immunol. Rev. 288, 136–148 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, D. A. T cells that help B cells in chronically inflamed tissues. Front. Immunol. 9, 1924 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Skougaard, M. et al. Four emerging immune cellular blood phenotypes associated with disease duration and activity established in psoriatic arthritis. Arthritis Res. Ther. 24, 262 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urbanski, G. et al. Single-cell RNA sequencing of peripheral blood defines two immunological subtypes of Sjögren’s disease. Preprint at bioRxiv, 2025.2002.2027.640483, https://doi.org/10.1101/2025.02.27.640483 (2025).

  • Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360–1372 (2018).

    PubMed 

    Google Scholar 

  • Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Rovin, B. H. et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397, 2070–2080 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mulhearn, B., Barton, A. & Viatte, S. Using the immunophenotype to predict response to biologic drugs in rheumatoid arthritis. J. Pers. Med. 9, 46 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wientjes, M. H. M., den Broeder, A. A., Welsing, P. M. J., Verhoef, L. M. & van den Bemt, B. J. F. Prediction of response to anti-TNF treatment using laboratory biomarkers in patients with rheumatoid arthritis: a systematic review. RMD Open. 8, e002570 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, S. et al. A molecular signature response classifier to predict inadequate response to tumor necrosis factor-α inhibitors: the NETWORK-004 prospective observational study. Rheumatol. Ther. 8, 1159–1176 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergman, M. J. et al. Clinical utility and cost savings in predicting inadequate response to anti-TNF therapies in rheumatoid arthritis. Rheumatol. Ther. 7, 775–792 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aldridge, J. et al. Blood PD-1+TFh and CTLA-4+CD4+ T cells predict remission after CTLA-4Ig treatment in early rheumatoid arthritis. Rheumatology 61, 1233–1242 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Monjo-Henry, I. et al. Circulating Tfh cells are differentially modified by abatacept or TNF blockers and predict treatment response in rheumatoid arthritis. Rheumatology 64, 517–525 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Edner, N. M. et al. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat. Immunol. 21, 1244–1255 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sellam, J. et al. Blood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 63, 3692–3701 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Möller, B. et al. Class-switched B cells display response to therapeutic B-cell depletion in rheumatoid arthritis. Arthritis Res. Ther. 11, R62 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roll, P., Dörner, T. & Tony, H. P. Anti-CD20 therapy in patients with rheumatoid arthritis: predictors of response and B cell subset regeneration after repeated treatment. Arthritis Rheum. 58, 1566–1575 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Vital, E. M., Dass, S., Buch, M. H., Rawstron, A. C. & Emery, P. An extra dose of rituximab improves clinical response in rheumatoid arthritis patients with initial incomplete B cell depletion: a randomised controlled trial. Ann. Rheum. Dis. 74, 1195–1201 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Baker, K. F. et al. Single-cell insights into immune dysregulation in rheumatoid arthritis flare versus drug-free remission. Nat. Commun. 15, 1063 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orange, D. E. et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N. Engl. J. Med. 383, 218–228 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rivellese, F. et al. Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat. Med. 28, 1256–1268 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nerviani, A. et al. A pauci-immune synovial pathotype predicts inadequate response to TNFα-blockade in rheumatoid arthritis patients. Front. Immunol. 11, 845 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rivellese, F. et al. Stratification of biological therapies by pathobiology in biologic-naive patients with rheumatoid arthritis (STRAP and STRAP-EU): two parallel, open-label, biopsy-driven, randomised trials. Lancet Rheumatol. 5, e648–e659 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Humby, F. et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet 397, 305–317 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • MacDonald, L. et al. Synovial tissue myeloid dendritic cell subsets exhibit distinct tissue-niche localization and function in health and rheumatoid arthritis. Immunity 57, 2843–2862.e12 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Thomas, T. et al. A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease. Nat. Immunol. 25, 2152–2165 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carter, L. M., Wigston, Z., Laws, P. & Vital, E. M. Rapid efficacy of anifrolumab across multiple subtypes of recalcitrant cutaneous lupus erythematosus parallels changes in discrete subsets of blood transcriptomic and cellular biomarkers. Br. J. Dermatol. 189, 210–218 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Baker, T. et al. Type I interferon blockade with anifrolumab in patients with systemic lupus erythematosus modulates key immunopathological pathways in a gene expression and proteomic analysis of two phase 3 trials. Ann. Rheum. Dis. 83, 1018–1027 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Casey, K. A. et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci. Med. 5, e000286 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Law, C. et al. Interferon subverts an AHR-JUN axis to promote CXCL13+ T cells in lupus. Nature 631, 857–866 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vital, E. M. et al. Anifrolumab efficacy and safety by type I interferon gene signature and clinical subgroups in patients with SLE: post hoc analysis of pooled data from two phase III trials. Ann. Rheum. Dis. 81, 951–961 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Moysidou, G. S. et al. Molecular basis for the disease-modifying effects of belimumab in systemic lupus erythematosus and molecular predictors of early response: blood transcriptome analysis implicates the innate immunity and DNA damage response pathways. Ann. Rheum. Dis. 84, 262–273 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Hoffman, R. W. et al. Gene expression and pharmacodynamic changes in 1,760 systemic lupus erythematosus patients from two phase III trials of BAFF blockade with tabalumab. Arthritis Rheumatol. 69, 643–654 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakano, M. et al. Distinct transcriptome architectures underlying lupus establishment and exacerbation. Cell 185, 3375–3389.e21 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, W. et al. Heterogeneity of peripheral immune cell landscape in systemic lupus erythematosus patients after belimumab treatment. Clin. Exp. Rheumatol. 43, 1259–1276 (2025).

    PubMed 

    Google Scholar 

  • Maeda, S. et al. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci. Med. 10, e000976 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prete, M. et al. Belimumab restores Treg/Th17 balance in patients with refractory systemic lupus erythematosus. Lupus 27, 1926–1935 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Merrill, J. T. et al. Obexelimab in systemic lupus erythematosus with exploration of response based on gene pathway co-expression patterns: a double-blind, randomized, placebo-controlled, phase 2 trial. Arthritis Rheumatol. 75, 2185–2194 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Schafer, P. H. et al. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus. Ann. Rheum. Dis. 77, 1516–1523 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    PubMed 

    Google Scholar 

  • Hagen, M. et al. BCMA-targeted T-cell-engager therapy for autoimmune disease. N. Engl. J. Med. 391, 867–869 (2024).

    PubMed 

    Google Scholar 

  • Alexander, T., Krönke, J., Cheng, Q., Keller, U. & Krönke, G. Teclistamab-induced remission in refractory systemic lupus erythematosus. N. Engl. J. Med. 391, 864–866 (2024).

    PubMed 

    Google Scholar 

  • Wilhelm, A. et al. Selective CAR T cell-mediated B cell depletion suppresses IFN signature in SLE. JCI Insight 9, e179433 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramoni, R. B. et al. The Undiagnosed Diseases Network: accelerating discovery about health and disease. Am. J. Hum. Genet. 100, 185–192 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mueller, A. A. et al. High-dimensional immunophenotyping reveals immune cell aberrations in patients with undiagnosed inflammatory and autoimmune diseases. J. Clin. Invest. 133, e169619 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boycott, K. M. et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am. J. Hum. Genet. 100, 695–705 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frésard, L. et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat. Med. 25, 911–919 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Montgomery, S. B., Bernstein, J. A. & Wheeler, M. T. Toward transcriptomics as a primary tool for rare disease investigation. Cold Spring Harb. Mol. Case Stud. 8, a006198 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. et al. Multi-lineage transcriptional and cell communication signatures define pathways in individuals at-risk for developing rheumatoid arthritis that initiate and perpetuate disease. Preprint at bioRxiv, https://doi.org/10.1101/2025.02.08.619913 (2025).

  • Inamo, J. et al. Deep immunophenotyping reveals circulating activated lymphocytes in individuals at risk for rheumatoid arthritis. J. Clin. Investig. 135, e185217 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasaki, T. et al. A CD57+ cytotoxic CD8 T cell subset associated with fibrotic lung disease in systemic sclerosis. Preprint at bioRxiv, 2025.2001.2027.635121, https://doi.org/10.1101/2025.01.27.635121 (2025).

  • Biesen, R. et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 58, 1136–1145 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Rose, T. et al. IFNα and its response proteins, IP-10 and SIGLEC-1, are biomarkers of disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 72, 1639–1645 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Fang, H., Wang, S. A., Medeiros, L. J. & Wang, W. Application of flow cytometry immunophenotypic analysis for the diagnosis of mature B-cell lymphomas/leukemias. Hum. Pathol. 156, 105711 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, A. A. & Platt, C. D. Flow cytometry-based immune phenotyping of T and B lymphocytes in the evaluation of immunodeficiency and immune dysregulation. Immunol. Allergy Clin. North. Am. 45, 189–203 (2025).

    PubMed 

    Google Scholar 

  • LaBere, B. et al. Clinical utility of measuring CD4+ T follicular cells in patients with immune dysregulation. J. Autoimmun. 140, 103088 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotliar, D. et al. Reproducible single cell annotation of programs underlying T-cell subsets, activation states, and functions. Preprint at bioRxiv, https://doi.org/10.1101/2024.05.03.592310 (2024).

  • Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Simone, M. et al. Comparative analysis of commercial single-cell RNA sequencing technologies. Preprint at bioRxiv, 2024.2006.2018.599579, https://doi.org/10.1101/2024.06.18.599579 (2024).

  • Liu, J. et al. Combined single cell transcriptome and surface epitope profiling identifies potential biomarkers of psoriatic arthritis and facilitates diagnosis via machine learning. Front. Immunol. 13, 835760 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, D. L., Smith, C. & Kingsley, G. Joint damage and disability in rheumatoid arthritis: an updated systematic review. Clin. Exp. Rheumatol. 21, S20–S27 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Wakefield, R. J. et al. After treat-to-target: can a targeted ultrasound initiative improve RA outcomes? Ann. Rheum. Dis. 71, 799–803 (2012).

    PubMed 

    Google Scholar 

  • Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishigaki, K. et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat. Genet. 54, 1640–1651 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDermott, G. C. et al. Polygenic risk scores for rheumatoid arthritis and idiopathic pulmonary fibrosis and associations with RA, interstitial lung abnormalities, and quantitative interstitial abnormalities among smokers. Semin. Arthritis Rheum. 72, 152708 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Yarwood, A. et al. A weighted genetic risk score using all known susceptibility variants to estimate rheumatoid arthritis risk. Ann. Rheum. Dis. 74, 170–176 (2015).

    PubMed 

    Google Scholar 

  • Krenn, V. et al. Grading of chronic synovitis — a histopathological grading system for molecular and diagnostic pathology. Pathol. Res. Pract. 198, 317–325 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bao, W., Xie, M. & Ye, Y. Age-associated B cells indicate disease activity in rheumatoid arthritis. Cell Immunol. 377, 104533 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Cooles, F. A. H. et al. Phenotypic and transcriptomic analysis of peripheral blood plasmacytoid and conventional dendritic cells in early drug naïve rheumatoid arthritis. Front. Immunol. 9, 755 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments