Bray, C. et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ 115, 317–321 (2016).
Google Scholar
Weinstein, A., Alexander, R. V. & Zack, D. J. A review of complement activation in SLE. Curr. Rheumatol. Rep. 23, 16 (2021).
Google Scholar
Sanjabi, S. & Lear, S. New cytometry tools for immune monitoring during cancer immunotherapy. Cytom. B Clin. Cytom. 100, 10–18 (2021).
Google Scholar
Hartmann, F. J. & Bendall, S. C. Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat. Rev. Rheumatol. 16, 87–99 (2020).
Google Scholar
Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single-cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017).
Google Scholar
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).
Google Scholar
Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).
Google Scholar
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).
Google Scholar
Zhang, S., Li, X., Lin, J., Lin, Q. & Wong, K. C. Review of single-cell RNA-seq data clustering for cell-type identification and characterization. RNA 29, 517–530 (2023).
Google Scholar
Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl. Med. 10, eaaq0305 (2018).
Google Scholar
Reshef, Y. A. et al. Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics. Nat. Biotechnol. 40, 355–363 (2022).
Google Scholar
Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).
Google Scholar
Stone, J. H. et al. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377, 317–328 (2017).
Google Scholar
Devauchelle-Pensec, V. et al. Effect of tocilizumab on disease activity in patients with active polymyalgia rheumatica receiving glucocorticoid therapy: a randomized clinical trial. JAMA 328, 1053–1062 (2022).
Google Scholar
Dima, A., Opris, D., Jurcut, C. & Baicus, C. Is there still a place for erythrocyte sedimentation rate and C-reactive protein in systemic lupus erythematosus? Lupus 25, 1173–1179 (2016).
Google Scholar
Aringer, M. Inflammatory markers in systemic lupus erythematosus. J. Autoimmun. 110, 102374 (2020).
Google Scholar
Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).
Google Scholar
Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).
Google Scholar
Cooles, F. A. H. & Isaacs, J. D. The interferon gene signature as a clinically relevant biomarker in autoimmune rheumatic disease. Lancet Rheumatol. 4, e61–e72 (2022).
Google Scholar
Lipsky, P. E. et al. Biological impact of iberdomide in patients with active systemic lupus erythematosus. Ann. Rheum. Dis. 81, 1136–1142 (2022).
Google Scholar
Tanaka, H. et al. Extracting immunological and clinical heterogeneity across autoimmune rheumatic diseases by cohort-wide immunophenotyping. Ann. Rheum. Dis. 83, 242–252 (2024).
Google Scholar
Burns, M. et al. Dysregulated CD38 expression on peripheral blood immune cell subsets in SLE. Int. J. Mol. Sci. 22, 2424 (2021).
Google Scholar
Katsuyama, E. et al. The CD38/NAD/SIRTUIN1/EZH2 axis mitigates cytotoxic CD8 T cell function and identifies patients with SLE prone to infections. Cell Rep. 30, 112–123.e4 (2020).
Google Scholar
Wang, R. et al. Clonally expanded CD38hi cytotoxic CD8 T cells define the T cell infiltrate in checkpoint inhibitor-associated arthritis. Sci. Immunol. 8, eadd1591 (2023).
Google Scholar
Bocharnikov, A. V. et al. PD-1hi CXCR5− T peripheral helper cells promote B cells responses in lupus via MAF and IL-21. JCI Insight 4, e130062 (2019).
Google Scholar
He, J. et al. Circulating precursor CCR7loPD-1hi CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39, 770–781 (2013).
Google Scholar
Lin, J., Yu, Y., Ma, J., Ren, C. & Chen, W. PD-1+CXCR5−CD4+T cells are correlated with the severity of systemic lupus erythematosus. Rheumatology 58, 2188–2192 (2019).
Google Scholar
Makiyama, A. et al. Expanded circulating peripheral helper T cells in systemic lupus erythematosus: association with disease activity and B cell differentiation. Rheumatology 58, 1861–1869 (2019).
Google Scholar
Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).
Google Scholar
Jenks, S. A. et al. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739.e6 (2018).
Google Scholar
Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).
Google Scholar
Marks, K. E. & Rao, D. A. T peripheral helper cells in autoimmune diseases. Immunol. Rev. 307, 191–202 (2022).
Google Scholar
Balog, J. et al. Comparative single-cell multiplex immunophenotyping of therapy-naive patients with rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus shed light on disease-specific composition of the peripheral immune system. Front. Immunol. 15, 1376933 (2024).
Google Scholar
Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184, 3006–3021.e17 (2021).
Google Scholar
Chen, S. et al. Interleukin 17A and IL-17F expression and functional responses in rheumatoid arthritis and peripheral spondyloarthritis. J. Rheumatol. 47, 1606–1613 (2020).
Google Scholar
Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).
Google Scholar
Mease, P. J. Is there a role for rituximab in the treatment of spondyloarthritis and psoriatic arthritis? J. Rheumatol. 39, 2235–2237 (2012).
Google Scholar
Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).
Google Scholar
Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).
Google Scholar
Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).
Google Scholar
Yager, N. et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann. Rheum. Dis. 80, 1559–1567 (2021).
Google Scholar
Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).
Google Scholar
Fortea-Gordo, P. et al. Two populations of circulating PD-1hiCD4 T cells with distinct B cell helping capacity are elevated in early rheumatoid arthritis. Rheumatology 58, 1662–1673 (2019).
Google Scholar
Sowerby, J. M. & Rao, D. A. T cell-B cell interactions in human autoimmune diseases. Curr. Opin. Immunol. 93, 102539 (2025).
Google Scholar
Povoleri, G. A. M. et al. Psoriatic and rheumatoid arthritis joints differ in the composition of CD8+ tissue-resident memory T cell subsets. Cell Rep. 42, 112514 (2023).
Google Scholar
Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).
Google Scholar
Mease, P. J. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).
Google Scholar
McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).
Google Scholar
Qaiyum, Z., Gracey, E., Yao, Y. & Inman, R. D. Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann. Rheum. Dis. 78, 1566–1575 (2019).
Google Scholar
Jonsson, A. H. et al. Granzyme K+ CD8 T cells form a core population in inflamed human tissue. Sci. Transl. Med. 14, eabo0686 (2022).
Google Scholar
Reece, R. J., Canete, J. D., Parsons, W. J., Emery, P. & Veale, D. J. Distinct vascular patterns of early synovitis in psoriatic, reactive, and rheumatoid arthritis. Arthritis Rheum. 42, 1481–1484 (1999).
Google Scholar
Floudas, A. et al. Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis. Ann. Rheum. Dis. 81, 1224–1242 (2022).
Google Scholar
Abji, F. et al. Proteinase-mediated macrophage signaling in psoriatic arthritis. Front. Immunol. 11, 629726 (2020).
Google Scholar
Fragoulis, G. E. et al. Distinct innate and adaptive immunity phenotypic profile at the circulating single-cell level in psoriatic arthritis. Clin. Immunol. 253, 109679 (2023).
Google Scholar
Li, B. et al. Differential immunological profiles in seronegative versus seropositive rheumatoid arthritis: Th17/Treg dysregulation and IL-4. Front. Immunol. 15, 1447213 (2024).
Google Scholar
Bhamidipati, K. et al. Spatial patterning of fibroblast TGFβ signaling underlies treatment resistance in rheumatoid arthritis. Preprint at bioRxiv, https://doi.org/10.1101/2025.03.14.642821 (2025).
Naidoo, J. et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 26, 2375–2391 (2015).
Google Scholar
Ghosh, N. & Bass, A. R. Rheumatic complications of immune checkpoint inhibitors. Rheum. Dis. Clin. North. Am. 48, 411–428 (2022).
Google Scholar
Ghosh, N. et al. Identification of outcome domains in immune checkpoint inhibitor-induced inflammatory arthritis and polymyalgia rheumatica: a scoping review by the OMERACT irAE working group. Semin. Arthritis Rheum. 58, 152110 (2023).
Google Scholar
Kim, S. T. et al. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat. Commun. 13, 1970 (2022).
Google Scholar
Maschmeyer, P. et al. Antigen-driven PD-1+ TOX+ BHLHE40+ and PD-1+ TOX+ EOMES+ T lymphocytes regulate juvenile idiopathic arthritis in situ. Eur. J. Immunol. 51, 915–929 (2021).
Google Scholar
Barturen, G., Beretta, L., Cervera, R., Van Vollenhoven, R. & Alarcón-Riquelme, M. E. Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 14, 75–93 (2018).
Google Scholar
Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).
Google Scholar
Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).
Google Scholar
Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).
Google Scholar
Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).
Google Scholar
Dunlap, G. et al. Clonal associations between lymphocyte subsets and functional states in rheumatoid arthritis synovium. Nat. Commun. 15, 4991 (2024).
Google Scholar
Durham, L. E. et al. Substantive similarities between synovial fluid and synovial tissue t cells in inflammatory arthritis via single-cell RNA and T cell receptor sequencing. Arthritis Rheumatol. 76, 1594–1601 (2024).
Google Scholar
Kubo, S. et al. Peripheral blood immunophenotypic diversity in patients with rheumatoid arthritis and its impact on therapeutic responsiveness. Ann. Rheum. Dis. 84, 210–220 (2025).
Google Scholar
Goto, M. et al. Age-associated CD4+ T cells with B cell-promoting functions are regulated by ZEB2 in autoimmunity. Sci. Immunol. 9, eadk1643 (2024).
Google Scholar
Horisberger, A. et al. Blood immunophenotyping identifies distinct kidney histopathology and outcomes in patients with lupus nephritis. J. Clin. Invest. https://doi.org/10.1172/jci181034 (2025).
Google Scholar
Sasaki, T. et al. Clonal relationships between Tph and Tfh cells in patients with SLE and in murine lupus. Preprint at bioRxiv, https://doi.org/10.1101/2025.01.27.635189 (2025).
Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).
Google Scholar
Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).
Google Scholar
Billi, A. C. et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci. Transl. Med. 14, eabn2263 (2022).
Google Scholar
Dunlap, G. S. et al. Single-cell transcriptomics reveals distinct effector profiles of infiltrating T cells in lupus skin and kidney. JCI Insight 7, e156341 (2022).
Google Scholar
Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).
Google Scholar
Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).
Google Scholar
Danaher, P. et al. Childhood-onset lupus nephritis is characterized by complex interactions between kidney stroma and infiltrating immune cells. Sci. Transl. Med. 16, eadl1666 (2024).
Google Scholar
Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).
Google Scholar
Guthridge, J. M. et al. Adults with systemic lupus exhibit distinct molecular phenotypes in a cross-sectional study. eClinicalMedicine 20, 100291 (2020).
Google Scholar
Hubbard, E. L. et al. Analysis of transcriptomic features reveals molecular endotypes of SLE with clinical implications. Genome Med. 15, 84 (2023).
Google Scholar
Garantziotis, P. et al. Molecular taxonomy of systemic lupus erythematosus through data-driven patient stratification: molecular endotypes and cluster-tailored drugs. Front. Immunol. 13, 860726 (2022).
Google Scholar
Rincon-Arevalo, H. et al. Deep phenotyping of CD11c+ B cells in systemic autoimmunity and controls. Front. Immunol. 12, 635615 (2021).
Google Scholar
Wehr, C. et al. A new CD21low B cell population in the peripheral blood of patients with SLE. Clin. Immunol. 113, 161–171 (2004).
Google Scholar
Kubo, S. et al. Peripheral immunophenotyping identifies three subgroups based on T cell heterogeneity in lupus patients. Arthritis Rheumatol. 69, 2029–2037 (2017).
Google Scholar
Sasaki, T. et al. Longitudinal immune cell profiling in early systemic lupus erythematosus. Arthritis Rheumatol. 74, 1808–1821 (2022).
Google Scholar
Choi, J. Y. et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 67, 988–999 (2015).
Google Scholar
Jenks, S. A., Cashman, K. S., Woodruff, M. C., Lee, F. E. & Sanz, I. Extrafollicular responses in humans and SLE. Immunol. Rev. 288, 136–148 (2019).
Google Scholar
Rao, D. A. T cells that help B cells in chronically inflamed tissues. Front. Immunol. 9, 1924 (2018).
Google Scholar
Skougaard, M. et al. Four emerging immune cellular blood phenotypes associated with disease duration and activity established in psoriatic arthritis. Arthritis Res. Ther. 24, 262 (2022).
Google Scholar
Urbanski, G. et al. Single-cell RNA sequencing of peripheral blood defines two immunological subtypes of Sjögren’s disease. Preprint at bioRxiv, 2025.2002.2027.640483, https://doi.org/10.1101/2025.02.27.640483 (2025).
Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360–1372 (2018).
Google Scholar
Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).
Google Scholar
Rovin, B. H. et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397, 2070–2080 (2021).
Google Scholar
Mulhearn, B., Barton, A. & Viatte, S. Using the immunophenotype to predict response to biologic drugs in rheumatoid arthritis. J. Pers. Med. 9, 46 (2019).
Google Scholar
Wientjes, M. H. M., den Broeder, A. A., Welsing, P. M. J., Verhoef, L. M. & van den Bemt, B. J. F. Prediction of response to anti-TNF treatment using laboratory biomarkers in patients with rheumatoid arthritis: a systematic review. RMD Open. 8, e002570 (2022).
Google Scholar
Cohen, S. et al. A molecular signature response classifier to predict inadequate response to tumor necrosis factor-α inhibitors: the NETWORK-004 prospective observational study. Rheumatol. Ther. 8, 1159–1176 (2021).
Google Scholar
Bergman, M. J. et al. Clinical utility and cost savings in predicting inadequate response to anti-TNF therapies in rheumatoid arthritis. Rheumatol. Ther. 7, 775–792 (2020).
Google Scholar
Aldridge, J. et al. Blood PD-1+TFh and CTLA-4+CD4+ T cells predict remission after CTLA-4Ig treatment in early rheumatoid arthritis. Rheumatology 61, 1233–1242 (2022).
Google Scholar
Monjo-Henry, I. et al. Circulating Tfh cells are differentially modified by abatacept or TNF blockers and predict treatment response in rheumatoid arthritis. Rheumatology 64, 517–525 (2025).
Google Scholar
Edner, N. M. et al. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat. Immunol. 21, 1244–1255 (2020).
Google Scholar
Sellam, J. et al. Blood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 63, 3692–3701 (2011).
Google Scholar
Möller, B. et al. Class-switched B cells display response to therapeutic B-cell depletion in rheumatoid arthritis. Arthritis Res. Ther. 11, R62 (2009).
Google Scholar
Roll, P., Dörner, T. & Tony, H. P. Anti-CD20 therapy in patients with rheumatoid arthritis: predictors of response and B cell subset regeneration after repeated treatment. Arthritis Rheum. 58, 1566–1575 (2008).
Google Scholar
Vital, E. M., Dass, S., Buch, M. H., Rawstron, A. C. & Emery, P. An extra dose of rituximab improves clinical response in rheumatoid arthritis patients with initial incomplete B cell depletion: a randomised controlled trial. Ann. Rheum. Dis. 74, 1195–1201 (2015).
Google Scholar
Baker, K. F. et al. Single-cell insights into immune dysregulation in rheumatoid arthritis flare versus drug-free remission. Nat. Commun. 15, 1063 (2024).
Google Scholar
Orange, D. E. et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N. Engl. J. Med. 383, 218–228 (2020).
Google Scholar
Rivellese, F. et al. Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat. Med. 28, 1256–1268 (2022).
Google Scholar
Nerviani, A. et al. A pauci-immune synovial pathotype predicts inadequate response to TNFα-blockade in rheumatoid arthritis patients. Front. Immunol. 11, 845 (2020).
Google Scholar
Rivellese, F. et al. Stratification of biological therapies by pathobiology in biologic-naive patients with rheumatoid arthritis (STRAP and STRAP-EU): two parallel, open-label, biopsy-driven, randomised trials. Lancet Rheumatol. 5, e648–e659 (2023).
Google Scholar
Humby, F. et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet 397, 305–317 (2021).
Google Scholar
Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).
Google Scholar
MacDonald, L. et al. Synovial tissue myeloid dendritic cell subsets exhibit distinct tissue-niche localization and function in health and rheumatoid arthritis. Immunity 57, 2843–2862.e12 (2024).
Google Scholar
Thomas, T. et al. A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease. Nat. Immunol. 25, 2152–2165 (2024).
Google Scholar
Carter, L. M., Wigston, Z., Laws, P. & Vital, E. M. Rapid efficacy of anifrolumab across multiple subtypes of recalcitrant cutaneous lupus erythematosus parallels changes in discrete subsets of blood transcriptomic and cellular biomarkers. Br. J. Dermatol. 189, 210–218 (2023).
Google Scholar
Baker, T. et al. Type I interferon blockade with anifrolumab in patients with systemic lupus erythematosus modulates key immunopathological pathways in a gene expression and proteomic analysis of two phase 3 trials. Ann. Rheum. Dis. 83, 1018–1027 (2024).
Google Scholar
Casey, K. A. et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci. Med. 5, e000286 (2018).
Google Scholar
Law, C. et al. Interferon subverts an AHR-JUN axis to promote CXCL13+ T cells in lupus. Nature 631, 857–866 (2024).
Google Scholar
Vital, E. M. et al. Anifrolumab efficacy and safety by type I interferon gene signature and clinical subgroups in patients with SLE: post hoc analysis of pooled data from two phase III trials. Ann. Rheum. Dis. 81, 951–961 (2022).
Google Scholar
Moysidou, G. S. et al. Molecular basis for the disease-modifying effects of belimumab in systemic lupus erythematosus and molecular predictors of early response: blood transcriptome analysis implicates the innate immunity and DNA damage response pathways. Ann. Rheum. Dis. 84, 262–273 (2025).
Google Scholar
Hoffman, R. W. et al. Gene expression and pharmacodynamic changes in 1,760 systemic lupus erythematosus patients from two phase III trials of BAFF blockade with tabalumab. Arthritis Rheumatol. 69, 643–654 (2017).
Google Scholar
Nakano, M. et al. Distinct transcriptome architectures underlying lupus establishment and exacerbation. Cell 185, 3375–3389.e21 (2022).
Google Scholar
Sun, W. et al. Heterogeneity of peripheral immune cell landscape in systemic lupus erythematosus patients after belimumab treatment. Clin. Exp. Rheumatol. 43, 1259–1276 (2025).
Google Scholar
Maeda, S. et al. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci. Med. 10, e000976 (2023).
Google Scholar
Prete, M. et al. Belimumab restores Treg/Th17 balance in patients with refractory systemic lupus erythematosus. Lupus 27, 1926–1935 (2018).
Google Scholar
Merrill, J. T. et al. Obexelimab in systemic lupus erythematosus with exploration of response based on gene pathway co-expression patterns: a double-blind, randomized, placebo-controlled, phase 2 trial. Arthritis Rheumatol. 75, 2185–2194 (2023).
Google Scholar
Schafer, P. H. et al. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus. Ann. Rheum. Dis. 77, 1516–1523 (2018).
Google Scholar
Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).
Google Scholar
Hagen, M. et al. BCMA-targeted T-cell-engager therapy for autoimmune disease. N. Engl. J. Med. 391, 867–869 (2024).
Google Scholar
Alexander, T., Krönke, J., Cheng, Q., Keller, U. & Krönke, G. Teclistamab-induced remission in refractory systemic lupus erythematosus. N. Engl. J. Med. 391, 864–866 (2024).
Google Scholar
Wilhelm, A. et al. Selective CAR T cell-mediated B cell depletion suppresses IFN signature in SLE. JCI Insight 9, e179433 (2024).
Google Scholar
Ramoni, R. B. et al. The Undiagnosed Diseases Network: accelerating discovery about health and disease. Am. J. Hum. Genet. 100, 185–192 (2017).
Google Scholar
Mueller, A. A. et al. High-dimensional immunophenotyping reveals immune cell aberrations in patients with undiagnosed inflammatory and autoimmune diseases. J. Clin. Invest. 133, e169619 (2023).
Google Scholar
Boycott, K. M. et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am. J. Hum. Genet. 100, 695–705 (2017).
Google Scholar
Frésard, L. et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat. Med. 25, 911–919 (2019).
Google Scholar
Montgomery, S. B., Bernstein, J. A. & Wheeler, M. T. Toward transcriptomics as a primary tool for rare disease investigation. Cold Spring Harb. Mol. Case Stud. 8, a006198 (2022).
Google Scholar
Liu, C. et al. Multi-lineage transcriptional and cell communication signatures define pathways in individuals at-risk for developing rheumatoid arthritis that initiate and perpetuate disease. Preprint at bioRxiv, https://doi.org/10.1101/2025.02.08.619913 (2025).
Inamo, J. et al. Deep immunophenotyping reveals circulating activated lymphocytes in individuals at risk for rheumatoid arthritis. J. Clin. Investig. 135, e185217 (2025).
Google Scholar
Sasaki, T. et al. A CD57+ cytotoxic CD8 T cell subset associated with fibrotic lung disease in systemic sclerosis. Preprint at bioRxiv, 2025.2001.2027.635121, https://doi.org/10.1101/2025.01.27.635121 (2025).
Biesen, R. et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 58, 1136–1145 (2008).
Google Scholar
Rose, T. et al. IFNα and its response proteins, IP-10 and SIGLEC-1, are biomarkers of disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 72, 1639–1645 (2013).
Google Scholar
Fang, H., Wang, S. A., Medeiros, L. J. & Wang, W. Application of flow cytometry immunophenotypic analysis for the diagnosis of mature B-cell lymphomas/leukemias. Hum. Pathol. 156, 105711 (2025).
Google Scholar
Nguyen, A. A. & Platt, C. D. Flow cytometry-based immune phenotyping of T and B lymphocytes in the evaluation of immunodeficiency and immune dysregulation. Immunol. Allergy Clin. North. Am. 45, 189–203 (2025).
Google Scholar
LaBere, B. et al. Clinical utility of measuring CD4+ T follicular cells in patients with immune dysregulation. J. Autoimmun. 140, 103088 (2023).
Google Scholar
Kotliar, D. et al. Reproducible single cell annotation of programs underlying T-cell subsets, activation states, and functions. Preprint at bioRxiv, https://doi.org/10.1101/2024.05.03.592310 (2024).
Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).
Google Scholar
De Simone, M. et al. Comparative analysis of commercial single-cell RNA sequencing technologies. Preprint at bioRxiv, 2024.2006.2018.599579, https://doi.org/10.1101/2024.06.18.599579 (2024).
Liu, J. et al. Combined single cell transcriptome and surface epitope profiling identifies potential biomarkers of psoriatic arthritis and facilitates diagnosis via machine learning. Front. Immunol. 13, 835760 (2022).
Google Scholar
Scott, D. L., Smith, C. & Kingsley, G. Joint damage and disability in rheumatoid arthritis: an updated systematic review. Clin. Exp. Rheumatol. 21, S20–S27 (2003).
Google Scholar
Wakefield, R. J. et al. After treat-to-target: can a targeted ultrasound initiative improve RA outcomes? Ann. Rheum. Dis. 71, 799–803 (2012).
Google Scholar
Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).
Google Scholar
Ishigaki, K. et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat. Genet. 54, 1640–1651 (2022).
Google Scholar
McDermott, G. C. et al. Polygenic risk scores for rheumatoid arthritis and idiopathic pulmonary fibrosis and associations with RA, interstitial lung abnormalities, and quantitative interstitial abnormalities among smokers. Semin. Arthritis Rheum. 72, 152708 (2025).
Google Scholar
Yarwood, A. et al. A weighted genetic risk score using all known susceptibility variants to estimate rheumatoid arthritis risk. Ann. Rheum. Dis. 74, 170–176 (2015).
Google Scholar
Krenn, V. et al. Grading of chronic synovitis — a histopathological grading system for molecular and diagnostic pathology. Pathol. Res. Pract. 198, 317–325 (2002).
Google Scholar
Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).
Google Scholar
Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).
Google Scholar
Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).
Google Scholar
Bao, W., Xie, M. & Ye, Y. Age-associated B cells indicate disease activity in rheumatoid arthritis. Cell Immunol. 377, 104533 (2022).
Google Scholar
Cooles, F. A. H. et al. Phenotypic and transcriptomic analysis of peripheral blood plasmacytoid and conventional dendritic cells in early drug naïve rheumatoid arthritis. Front. Immunol. 9, 755 (2018).
Google Scholar
