Sunday, December 21, 2025
HomeArthritisMechanisms of osteoclast activation in inflammatory bone loss in rheumatoid arthritis

Mechanisms of osteoclast activation in inflammatory bone loss in rheumatoid arthritis


  • Alivernini, S., Firestein, G. S. & McInnes, I. B. The pathogenesis of rheumatoid arthritis. Immunity 55, 2255–2270 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Sims, N. A. & Gooi, J. H. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin. Cell Dev. Biol. 19, 444–451 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Martin, T. J. & Ng, K. W. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J. Cell. Biochem. 56, 357–366 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Schett, G. & Teitelbaum, S. L. Osteoclasts and arthritis. J. Bone Miner. Res. 24, 1142–1146 (2009).

    PubMed 

    Google Scholar 

  • Kim, E. Y. & Moudgil, K. D. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine 98, 87–96 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andreev, D., Kachler, K., Schett, G. & Bozec, A. Rheumatoid arthritis and osteoimmunology: The adverse impact of a deregulated immune system on bone metabolism. Bone 162, 116468 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Hofbauer, L. C. & Heufelder, A. E. Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. J. Mol. Med. 79, 243–253 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Marques-Carvalho, A., Kim, H.-N. & Almeida, M. The role of reactive oxygen species in bone cell physiology and pathophysiology. Bone Rep. 19, 101664 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertels, J. C., He, G. & Long, F. Metabolic reprogramming in skeletal cell differentiation. Bone Res. 12, 57 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsukasaki, M. & Takayanagi, H. Osteoimmunology: evolving concepts in bone–immune interactions in health and disease. Nat. Rev. Immunol. 19, 626–642 (2019). This article provides a comprehensive review that discusses concepts of osteoimmunology.

    CAS 
    PubMed 

    Google Scholar 

  • McDonald, M. M. et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 184, 1330–1347.e13 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, D. G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 190, 784–785 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Walker, D. G. Osteopetrosis cured by temporary parabiosis. Science 180, 875–875 (1973). This article is one of the earliest studies to show that osteoclasts can develop by fusion of monocytic cells.

    CAS 
    PubMed 

    Google Scholar 

  • Yahara, Y. et al. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat. Cell Biol. 22, 49–59 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurihara, N., Chenu, C., Miller, M., Civin, C. & Roodman, G. D. Identification of committed mononuclear precursors for osteoclast-like cells formed in long term human marrow cultures. Endocrinology 126, 2733–2741 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Udagawa, N. et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl Acad. Sci. USA 87, 7260–7264 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsuzaki, K. et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem. Biophys. Res. Commun. 246, 199–204 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novak, S. et al. Osteoclasts derive predominantly from bone marrow–resident CX3CR1+ precursor cells in homeostasis, whereas circulating CX3CR1+ cells contribute to osteoclast development during fracture repair. J. Immunol. 204, 868–878 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Rivollier, A. et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104, 4029–4037 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Gallois, A. et al. Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes. J. Bone Miner. Res. 25, 661–672 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Alnaeeli, M., Penninger, J. M. & Teng, Y.-T. A. Immune interactions with CD4+ T Cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J. Immunol. 177, 3314–3326 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Puchner, A. et al. Bona fide dendritic cells are pivotal precursors for osteoclasts. Ann. Rheum. Dis. 83, 518–528 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. C. G. & Teng, A. Y. Distinct cross talk of IL-17 & TGF-β with the immature CD11c+TRAF6(−/−)-null myeloid dendritic cell-derived osteoclast precursor (mDDOCp) may engage signaling toward an alternative pathway of osteoclastogenesis for arthritic bone loss in vivo. Immun. Inflamm. Dis. 12, e1173 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maitra, R. et al. Dendritic cell-mediated in vivo bone resorption. J. Immunol. 185, 1485–1491 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wakkach, A. et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood 112, 5074–5083 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Tsukasaki, M. et al. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat. Metab. 2, 1382–1390 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sims, N. A. & Martin, T. J. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 3, 481 (2014). This article provides a comprehensive review that summarizes cellular activities and signalling crosstalk in bone remodelling.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacquin, C., Gran, D. E., Lee, S. K., Lorenzo, J. A. & Aguila, H. L. Identification of multiple osteoclast precursor populations in murine bone marrow. J. Bone Miner. Res. 21, 67–77 (2009).

    Google Scholar 

  • Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019). This article is a landmark paper showing different macrophage populations in the healthy and inflamed joint.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meirow, Y. et al. Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Res. 10, 36 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takeyama, N. et al. Selective expansion of the CD14+/CD16bright subpopulation of circulating monocytes in patients with hemophagocytic syndrome. Ann. Hematol. 86, 787–792 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Kong, Y.-Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999). This article is the first to report that activated T cells can activate osteoclasts during inflammatory conditions.

    CAS 
    PubMed 

    Google Scholar 

  • Kim, K.-W., Kim, H.-R., Kim, B.-M., Cho, M.-L. & Lee, S.-H. Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. Am. J. Pathol. 185, 3011–3024 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Danks, L. et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann. Rheum. Dis. 75, 1187 (2016). This article shows that fibroblast-like synoviocytes are important contributors to inflammatory bone loss by producing RANKL.

    CAS 
    PubMed 

    Google Scholar 

  • Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Kondo, N., Kuroda, T. & Kobayashi, D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 22, 10922 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, N., Takami, M., Rho, J., Josien, R. & Choi, Y. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 195, 201–209 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Negishi-Koga, T. & Takayanagi, H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol. Rev. 231, 241–256 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Zheng, H. et al. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets. Mol. Med. 30, 20 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, T. et al. Klotho upregulates the interaction between RANK and TRAF6 to facilitate RANKL-induced osteoclastogenesis via the NF-κB signaling pathway. Ann. Transl. Med. 9, 1499 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iotsova, V. et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat. Med. 3, 1285–1289 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Döffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27, 277–285 (2001).

    PubMed 

    Google Scholar 

  • Lee, K., Seo, I., Choi, M. H. & Jeong, D. Roles of mitogen-activated protein kinases in osteoclast biology. Int. J. Mol. Sci. 19, 3004 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, E. F. Functions of AP1 (Fos/Jun) in bone development. Ann. Rheum. Dis. 61, ii40 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asagiri, M. et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261–1269 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Wong, B. R. et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041–1049 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Cawley, K. M. et al. Local production of osteoprotegerin by osteoblasts suppresses bone resorption. Cell Rep. 32, 108052 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crotti, T. N. et al. Receptor activator NF-κB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann. Rheum. Dis. 61, 1047 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pettit, A. R., Walsh, N. C., Manning, C., Goldring, S. R. & Gravallese, E. M. RANKL protein is expressed at the pannus–bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology 45, 1068–1076 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Pettit, A. R. et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Redlich, K. et al. Tumor necrosis factor α-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum. 46, 785–792 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Hansen, M. S. et al. Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res. 12, 5 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Omata, Y. et al. Interspecies single cell RNA seq analysis reveals the novel trajectory of osteoclast differentiation and therapeutic targets. J. Bone Miner. Res. 6, e10631 (2022).

    CAS 

    Google Scholar 

  • Steeve, K. T., Marc, P., Sandrine, T., Dominique, H. & Yannick, F. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49–60 (2004).

    CAS 

    Google Scholar 

  • Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marahleh, A. et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front. Immunol. 10, 2925 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Investig. 106, 1481–1488 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yokota, K. et al. Combination of tumor necrosis factor α and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol. 66, 121–129 (2014). This article shows that the pro-inflammatory cytokines, TNF and IL-6, can stimulate osteoclasts in vitro and in vivo.

    CAS 
    PubMed 

    Google Scholar 

  • Wei, S., Kitaura, H., Zhou, P., Ross, F. P. & Teitelbaum, S. L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Investig. 115, 282–290 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zwerina, J. et al. TNF-induced structural joint damage is mediated by IL-1. Proc. Natl Acad. Sci. USA 104, 11742–11747 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, Z. H. et al. IL-1α stimulation of osteoclast survival through the PI 3-kinase/Akt and ERK pathways. J. Biochem. 131, 161–166 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Ruscitti, P. et al. The role of IL-1β in the bone loss during rheumatic diseases. Mediat. Inflamm. 2015, 782382 (2015).

    Google Scholar 

  • Ishimi, Y. et al. IL-6 is produced by osteoblasts and induces bone resorption. J. Immunol. 145, 3297–3303 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Strand, V. et al. High levels of interleukin-6 in patients with rheumatoid arthritis are associated with greater improvements in health-related quality of life for sarilumab compared with adalimumab. Arthritis Res. Ther. 22, 250 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez, C., Gabay, O., Salvat, C., Henrotin, Y. E. & Berenbaum, F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthr. Cartil. 17, 473–481 (2009).

    CAS 

    Google Scholar 

  • Adam, S. et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci. Transl. Med. 12, eaay4447 (2020). This article highlights JAK signalling as a crucial pathway for inflammatory bone loss and proposes it as a novel therapeutic pathway.

    CAS 
    PubMed 

    Google Scholar 

  • Ortmann, R. A., Cheng, T., Visconti, R., Frucht, D. M. & O’Shea, J. J. Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation. Arthritis Res. Ther. 2, 16 (1999).

    Google Scholar 

  • Abu-Amer, Y. IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-κB. J. Clin. Investig. 107, 1375–1385 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palmqvist, P. et al. Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway. J. Biol. Chem. 281, 2414–2429 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, J. et al. Interleukin-4 inhibits RANKL-induced NFATc1 expression via STAT6: a novel mechanism mediating its blockade of osteoclastogenesis. J. Cell. Biochem. 112, 3385–3392 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bendixen, A. C. et al. IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor γ1. Proc. Natl Acad. Sci. USA 98, 2443–2448 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, T. E. et al. IL-4 and IL-13 induce equivalent expression of traditional M2 markers and modulation of reactive oxygen species in human macrophages. Sci. Rep. 13, 19589 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hata, H. et al. Distinct contribution of IL-6, TNF-α, IL-1, and IL-10 to T cell–mediated spontaneous autoimmune arthritis in mice. J. Clin. Investig. 114, 582–588 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, K. E. & Fox, S. W. Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Cell Biol. 8, 4 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carter, N. A., Rosser, E. C. & Mauri, C. Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res. Ther. 14, R32 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, X. et al. Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat. Commun. 9, 251 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sapra, L. et al. Regulatory B cells (Bregs) inhibit osteoclastogenesis and play a potential role in ameliorating ovariectomy-induced bone loss. Front. Immunol. 12, 691081 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, B., Oh, Y., Jo, S., Kim, T.-H. & Ji, J. D. A dual role of TGF-β in human osteoclast differentiation mediated by Smad1 versus Smad3 signaling. Immunol. Lett. 206, 33–40 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Xia, Y. et al. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat. Commun. 13, 3920 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • AlQranei, M. S., Senbanjo, L. T., Aljohani, H., Hamza, T. & Chellaiah, M. A. Lipopolysaccharide- TLR-4 axis regulates osteoclastogenesis independent of RANKL/RANK signaling. BMC Immunol. 22, 23 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weivoda, M. M. & Bradley, E. W. Macrophages and bone remodeling. J. Bone Min. Res. https://doi.org/10.1002/jbmr.4773 (2023).

    Article 

    Google Scholar 

  • Hanlon, M. M. et al. Loss of synovial tissue macrophage homeostasis precedes rheumatoid arthritis clinical onset. Sci. Adv. 10, eadj1252 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, D. et al. Synovial macrophages drive severe joint destruction in established rheumatoid arthritis. Sci. Rep. 15, 12111 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, M. K. et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol. 181, 1232–1244 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Batoon, L. et al. Osteal macrophages support osteoclast-mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model. J. Bone Miner. Res. 36, 2214–2228 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Isojima, T. et al. Bone marrow neutrophil progenitors suppress osteoclast formation in murine cortical and trabecular bone. Blood 146, 1331–1345 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • O’Neil, L. J. et al. Neutrophil-mediated carbamylation promotes articular damage in rheumatoid arthritis. Sci. Adv. 6, eabd2688 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. Neutrophils inhibit bone formation by directly contacting osteoblasts and suppressing osteogenic differentiation. Bone 190, 117310 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell. Mol. Immunol. 19, 177–191 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. TGFβ1+CCR5+ neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nat. Commun. 14, 159 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Numazaki, K. et al. Neutrophil extracellular traps inhibit osteoclastogenesis. Biochem. Biophys. Res. Commun. 705, 149743 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gazzinelli-Guimaraes, P. H., Jones, S. M., Voehringer, D., Mayer-Barber, K. D. & Samarasinghe, A. E. Eosinophils as modulators of host defense during parasitic, fungal, bacterial, and viral infections. J. Leukoc. Biol. 116, 1301–1323 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Andreev, D. et al. Eosinophils preserve bone homeostasis by inhibiting excessive osteoclast formation and activity via eosinophil peroxidase. Nat. Commun. 15, 1067 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Osteoclasts and osteoarthritis: novel intervention targets and therapeutic potentials during aging. Aging Cell 23, e14092 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andreev, D. et al. Regulatory eosinophils induce the resolution of experimental arthritis and appear in remission state of human rheumatoid arthritis. Ann. Rheum. Dis. 80, 451–468 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, Z. et al. Th2 and eosinophil responses suppress inflammatory arthritis. Nat. Commun. 7, 11596 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, Y. et al. Macrophages and osteoclasts stem from a bipotent progenitor downstream of a macrophage/osteoclast/dendritic cell progenitor. Blood Adv. 1, 1993–2006 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, C. W. et al. Human mast cells induce osteoclastogenesis through cell surface RANKL. Inflamm. Res. 71, 1261–1270 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, R., Jaw, J. J., Stutzman, N. C., Zou, Z. & Sun, P. D. Natural killer cell-produced IFN-γ and TNF-α induce target cell cytolysis through up-regulation of ICAM-1. J. Leukoc. Biol. 91, 299–309 (2011).

    PubMed 

    Google Scholar 

  • Cheng, J. et al. Molecular mechanisms of the biphasic effects of interferon-γ on osteoclastogenesis. J. Interf. Cytokine Res. 32, 34–45 (2011).

    CAS 

    Google Scholar 

  • Feng, S. et al. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology 145, 367–379 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rauber, S. et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 23, 938–944 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Omata, Y. et al. Group 2 innate lymphoid cells attenuate inflammatory arthritis and protect from bone destruction in mice. Cell Rep. 24, 169–180 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Omata, Y. et al. Type 2 innate lymphoid cells inhibit the differentiation of osteoclasts and protect from ovariectomy-induced bone loss. Bone 136, 115335 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Takaki-Kuwahara, A. et al. CCR6+ group 3 innate lymphoid cells accumulate in inflamed joints in rheumatoid arthritis and produce Th17 cytokines. Arthritis Res. Ther. 21, 198 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Levescot, A. et al. IL-1β-driven osteoclastogenic T regulatory cells accelerate bone erosion in arthritis. J. Clin. Investig. 131, e141008 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sato, K. & Takayanagi, H. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr. Opin. Rheumatol. 18, 419–426 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Investig. 103, 1345–1352 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lubberts, E. The IL-23–IL-17 axis in inflammatory arthritis. Nat. Rev. Rheumatol. 11, 415–429 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, H. et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ. 16, 1332–1343 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Zwerina, K. et al. Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the T-cell balance. Eur. J. Immunol. 42, 413–423 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Ibáñez, L. et al. Inflammatory osteoclasts prime TNFα-producing CD4+ T cells and express CX3CR1. J. Bone Miner. Res. 31, 1899–1908 (2016).

    PubMed 

    Google Scholar 

  • Valencia, X. et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108, 253–261 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bozec, A. & Zaiss, M. M. T regulatory cells in bone remodelling. Curr. Osteoporos. Rep. 15, 121–125 (2017).

    PubMed 

    Google Scholar 

  • Zaiss, M. M. et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 56, 4104–4112 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Bozec, A. et al. T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci. Transl. Med. 6, 235ra60 (2014).

    PubMed 

    Google Scholar 

  • Buchwald, Z. S., Kiesel, J. R., DiPaolo, R., Pagadala, M. S. & Aurora, R. Osteoclast activated FoxP3+CD8+ T-cells suppress bone resorption in vitro. PLoS One 7, e38199 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alvarez, C. et al. Regulatory T cell phenotype and anti-osteoclastogenic function in experimental periodontitis. Sci. Rep. 10, 19018 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schett, G. The role of ACPAs in at-risk individuals: early targeting of the bone and joints. Best Pract. Res. Clin. Rheumatol. 31, 53–58 (2017).

    PubMed 

    Google Scholar 

  • Catrina, A., Krishnamurthy, A. & Rethi, B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 7, e001228 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Investig. 122, 1791–1802 (2012). This article describes the ability of auto-antibodies to modulate osteoclastogenesis.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, M. et al. Anticitrullinated protein antibodies facilitate migration of synovial tissue-derived fibroblasts. Ann. Rheum. Dis. 78, 1621–1631 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Laurent, L. et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann. Rheum. Dis. 74, 1425 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Seeling, M. et al. Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc. Natl Acad. Sci. USA 110, 10729–10734 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seeling, M. et al. Immunoglobulin G-dependent inhibition of inflammatory bone remodeling requires pattern recognition receptor Dectin-1. Immunity 56, 1046–1063.e7 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Ota, Y. et al. Generation mechanism of RANKL+ effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis. Arthritis Res. Ther. 18, 67 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meednu, N. et al. Production of RANKL by memory B cells: a link between B cells and bone erosion in rheumatoid arthritis. Arthritis Rheumatol. 68, 805–816 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, X. et al. Estrogen-mediated downregulation of HIF-1α signaling in B lymphocytes influences postmenopausal bone loss. Bone Res. 10, 15 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo, L. et al. Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann. Rheum. Dis. 70, 2022 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Komatsu, N. et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J. Clin. Investig. 131, e143060 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo, L. et al. Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis. Ann. Rheum. Dis. 74, 928 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y., Terauchi, M., Vikulina, T., Roser-Page, S. & Weitzmann, M. N. B cell production of both OPG and RANKL is significantly increased in aged mice. Open Bone J. 6, 8–17 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019). This article refines the fibroblast subsets that support inflammation-induced osteoclastogenesis in arthritis.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019). This article provides a comprehensive analysis of cell types in the inflamed joint describing, for example, that IL-6 is mainly produced by synovial fibroblasts and IL-1 by monocytes.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sawa, S. et al. Autoimmune arthritis associated with mutated interleukin (IL)-6 receptor gp130 is driven by STAT3/IL-7–dependent homeostatic proliferation of CD4+ T cells. J. Exp. Med. 203, 1459–1470 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Komatsu, N. & Takayanagi, H. Mechanisms of joint destruction in rheumatoid arthritis — immune cell–fibroblast–bone interactions. Nat. Rev. Rheumatol. 18, 415–429 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Liang, Z. et al. Evaluation of the immune feature of ACPA-negative rheumatoid arthritis and the clinical value of matrix metalloproteinase-3. Front. Immunol. 13, 939265 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishikawa, T. et al. Prevention of progressive joint destruction in adjuvant induced arthritis in rats by a novel matrix metalloproteinase inhibitor, FR217840. Eur. J. Pharmacol. 508, 239–247 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Tada, M. et al. Itaconate reduces proliferation and migration of fibroblast-like synoviocytes and ameliorates arthritis models. Clin. Immunol. 264, 110255 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Intemann, J., Gorter, D. J. J. D., Naylor, A. J., Dankbar, B. & Wehmeyer, C. Importance of osteocyte-mediated regulation of bone remodelling in inflammatory bone disease. Swiss Med. Wkly 150, w20187 (2020).

    PubMed 

    Google Scholar 

  • Malysheva, K. et al. Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croat. Med. J. 57, 89–98 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Glass, D. A. et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Zheng, L. et al. Dickkopf-1 perpetuated synovial fibroblast activation and synovial angiogenesis in rheumatoid arthritis. Clin. Rheumatol. 40, 4279–4288 (2021).

    PubMed 

    Google Scholar 

  • Rauner, M. et al. WNT5A is induced by inflammatory mediators in bone marrow stromal cells and regulates cytokine and chemokine production. J. Bone Miner. Res. 27, 575–585 (2011).

    Google Scholar 

  • Mueller, A. A. et al. Wnt signaling drives stromal inflammation in inflammatory arthritis. Preprint at bioRxiv https://doi.org/10.1101/2025.01.06.631510 (2025).

  • Menghini, R. et al. Toll-Like receptor 4 mediates endothelial cell activation through NF-κB but is not associated with endothelial dysfunction in patients with rheumatoid arthritis. PLoS One 9, e99053 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Buul, J. D. van et al. ICAM-1 clustering on endothelial cells recruits VCAM-1. BioMed. Res. Int. 2010, 120328 (2010).

    Google Scholar 

  • Koch, A. E. et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J. Immunol. 152, 4149–4156 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Ballara, S. et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 44, 2055–2064 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Taylor, P. C. Serum vascular markers and vascular imaging in assessment of rheumatoid arthritis disease activity and response to therapy. Rheumatology 44, 721–728 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, H.-R., Kim, K.-W., Kim, B.-M., Cho, M.-L. & Lee, S.-H. The effect of vascular endothelial growth factor on osteoclastogenesis in rheumatoid arthritis. PLoS One 10, e0124909 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. CD147 induces angiogenesis through a vascular endothelial growth factor and hypoxia-inducible transcription factor 1α-mediated pathway in rheumatoid arthritis. Arthritis Rheum. 64, 1818–1827 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Zittermann, S. I. & Issekutz, A. C. Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation. J. Leukoc. Biol. 80, 247–257 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Miotla, J., Maciewicz, R., Kendrew, J., Feldmann, M. & Paleolog, E. Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab. Investig. 80, 1195–1205 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell. Mol. Immunol. 19, 384–408 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Taubmann, J. et al. Metabolic reprogramming of osteoclasts represents a therapeutic target during the treatment of osteoporosis. Sci. Rep. 10, 21020 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, C. et al. Sexual dimorphism of osteoclast reliance on mitochondrial oxidation of energy substrates in the mouse. JCI Insight 8, e174293 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Indo, Y. et al. Metabolic regulation of osteoclast differentiation and function. J. Bone Miner. Res. 28, 2392–2399 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Ledesma-Colunga, M. G., Passin, V., Lademann, F., Hofbauer, L. C. & Rauner, M. Novel insights into osteoclast energy metabolism. Curr. Osteoporos. Rep. 21, 660–669 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arisumi, S. et al. Metallothionein 3 promotes osteoclast differentiation and survival by regulating the intracellular Zn2+ concentration and NRF2 pathway. Cell Death Discov. 9, 436 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ha, H. et al. Reactive oxygen species mediate RANK signaling in osteoclasts. Exp. Cell Res. 301, 119–127 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Peace, C. G. & O’Neill, L. A. J. The role of itaconate in host defense and inflammation. J. Clin. Investig. 132, e148548 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kachler, K. et al. Acod1-mediated inhibition of aerobic glycolysis suppresses osteoclast differentiation and attenuates bone erosion in arthritis. Ann. Rheum. Dis. 83, e224774 (2024).

    PubMed 

    Google Scholar 

  • Takarada, T. et al. Osteoclastogenesis is negatively regulated by D-serine produced by osteoblasts. J. Cell. Physiol. 227, 3477–3487 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Karkache, I. Y., Damodaran, J. R., Molstad, D. H. H. & Bradley, E. W. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 771, 145362 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Stegen, S., Moermans, K., Stockmans, I., Thienpont, B. & Carmeliet, G. The serine synthesis pathway drives osteoclast differentiation through epigenetic regulation of NFATc1 expression. Nat. Metab. 6, 141–152 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brunner, J. S. et al. Environmental arginine controls multinuclear giant cell metabolism and formation. Nat. Commun. 11, 431 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. & Rosen, C. J. Nitric oxide and bone: the phoenix rises again. J. Clin. Investig. 131, e147072 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kilic, G. & Ozgocmen, S. Hand bone mass in rheumatoid arthritis: a review of the literature. World J. Orthop. 6, 106–116 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagaraj, S., Finzel, S., Stok, K. S., Barnabe, C. & SPECTRA Collaboration. High-resolution Peripheral quantitative computed tomography imaging in the assessment of periarticular bone of metacarpophalangeal and wrist joints. J. Rheumatol. 43, 1921–1934 (2016).

    PubMed 

    Google Scholar 

  • Kleyer, A. et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann. Rheum. Dis. 73, 854 (2014).

    PubMed 

    Google Scholar 

  • Kapetanovic, M. C. et al. Early changes in bone mineral density measured by digital X-ray radiogrammetry predict up to 20 years radiological outcome in rheumatoid arthritis. Arthritis Res. Ther. 13, R31 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grossman, J. M. et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 62, 1515–1526 (2010).

    Google Scholar 

  • Steinbuch, M., Youket, T. E. & Cohen, S. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos. Int. 15, 323–328 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Motavalli, R. et al. The clinical significance of the glucocorticoid receptors: genetics and epigenetics. J. Steroid Biochem. Mol. Biol. 213, 105952 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hofbauer, L. C. et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis1. Endocrinology 140, 4382–4389 (1999). This article shows that glucocorticoids induce RANKL and thus osteoclastogenesis.

    CAS 
    PubMed 

    Google Scholar 

  • Thiele, S. et al. Selective glucocorticoid receptor modulation maintains bone mineral density in mice. J. Bone Miner. Res. 27, 2242–2250 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • O’Brien, C. A. et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145, 1835–1841 (2004).

    PubMed 

    Google Scholar 

  • Rauch, A. et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 11, 517–531 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Colditz, J. et al. Osteogenic Dkk1 mediates glucocorticoid-induced but not arthritis-induced bone loss. J. Bone Miner. Res. 34, 1314–1323 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sato, A. Y. et al. Protection from glucocorticoid-induced osteoporosis by anti-catabolic signaling in the absence of Sost/Sclerostin. J. Bone Miner. Res. 31, 1791–1802 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kanagawa, H. et al. Methotrexate inhibits osteoclastogenesis by decreasing RANKL-induced calcium influx into osteoclast progenitors. J. Bone Miner. Metab. 34, 526–531 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Revu, S., Neregård, P., Klint, E., Korotkova, M. & Catrina, A. I. Synovial membrane immunohistology in early-untreated rheumatoid arthritis reveals high expression of catabolic bone markers that is modulated by methotrexate. Arthritis Res. Ther. 15, R205 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hensvold, A. H. et al. Serum RANKL levels associate with anti-citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res. Ther. 17, 239 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, C. et al. Damaging effects of chronic low-dose methotrexate usage on primary bone formation in young rats and potential protective effects of folinic acid supplementary treatment. Bone 44, 61–70 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • May, K. P., West, S. G., Mcdermott, M. T. & Huffer, W. E. The effect of low-dose methotrexate on bone metabolism and histomorphometry in rats. Arthritis Rheum. 37, 201–206 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • May, K. P., Mercill, D., McDermott, M. T. & West, S. G. The effect of methotrexate on mouse bone cells in culture. Arthritis Rheum. 39, 489–494 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Wheeler, D. L. et al. The short- and long-term effects of methotrexate on the rat skeleton. Bone 16, 215–221 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Xian, C. J. et al. Cellular mechanisms for methotrexate chemotherapy-induced bone growth defects. Bone 41, 842–850 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Tronstad, I. et al. Rheumatoid arthritis, disease-modifying antirheumatic drugs and risk of major osteoporotic fracture: prospective data from the HUNT Study, Norway. RMD Open 10, e003919 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Minaur, N. J. et al. Methotrexate in the treatment of rheumatoid arthritis. II. In vivo effects on bone mineral density. Rheumatology 41, 741–749 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Rolvien, T. et al. Clinical and radiological characterization of patients with immobilizing and progressive stress fractures in methotrexate osteopathy. Calcif. Tissue Int. 108, 219–230 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Robin, F. et al. Methotrexate osteopathy: five cases and systematic literature review. Osteoporos. Int. 32, 225–232 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Brackel, F. N., von, Grambeck, J., Barvencik, F., Amling, M. & Oheim, R. MTX osteopathy versus osteoporosis including response to treatment data — a retrospective single center study including 172 patients. Calcif. Tissue Int. 115, 599–610 (2024).

    Google Scholar 

  • Lee, C. et al. Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor κB, osteoprotegerin, and receptor activator of nuclear factor κB ligand. Arthritis Rheum. 50, 3831–3843 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Suematsu, A. et al. Scientific basis for the efficacy of combined use of antirheumatic drugs against bone destruction in rheumatoid arthritis. Mod. Rheumatol. 17, 17–23 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Kobayashi, Y. et al. The active metabolite of leflunomide, A771726, inhibits both the generation of and the bone-resorbing activity of osteoclasts by acting directly on cells of the osteoclast lineage. J. Bone Miner. Metab. 22, 318–328 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Rexhepi, S., Rexhepi, M., Sahatçiu-Meka, V., Mahmutaj, V. & Boshnjaku, S. The impact of low-dose disease-modifying anti-rheumatics drugs (DMARDs) on bone mineral density of premenopausal women in early rheumatoid arthritis. Med. Arch. 70, 101 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfeil, A. et al. Effects of leflunomide and methotrexate in rheumatoid arthritis detected by digital X-ray radiogrammetry and computer-aided joint space analysis. Rheumatol. Int. 29, 287–295 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Schett, G., Elewaut, D., McInnes, I. B., Dayer, J.-M. & Neurath, M. F. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Marotte, H. et al. A 1-year case-control study in patients with rheumatoid arthritis indicates prevention of loss of bone mineral density in both responders and nonresponders to infliximab. Arthritis Res. Ther. 9, R61 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vis, M. et al. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFκB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1495 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lange, U., Teichmann, J., Müller-Ladner, U. & Strunk, J. Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-α antibody: a prospective open-label pilot study. Rheumatology 44, 1546–1548 (2005). This article shows that anti-TNF therapy is osteoprotective in arthritis.

    CAS 
    PubMed 

    Google Scholar 

  • Wijbrandts, C. A. et al. Bone mineral density in rheumatoid arthritis patients 1 year after adalimumab therapy: arrest of bone loss. Ann. Rheum. Dis. 68, 373 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Krieckaert, C. L. M., Nurmohamed, M. T., Wolbink, G. & Lems, W. F. Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: a cohort study. Rheumatology 52, 547–553 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Chopin, F. et al. Long-term effects of infliximab on bone and cartilage turnover markers in patients with rheumatoid arthritis. Ann. Rheum. Dis. 67, 353–357 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Eekman, D. A. et al. Stable bone mineral density in lumbar spine and hip in contrast to bone loss in the hands during long-term treatment with infliximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 70, 389 (2011).

    PubMed 

    Google Scholar 

  • Hoff, M. et al. Adalimumab reduces hand bone loss in rheumatoid arthritis independent of clinical response: subanalysis of the PREMIER study. BMC Musculoskelet. Disord. 12, 54 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finzel, S. et al. Repair of bone erosions in rheumatoid arthritis treated with tumour necrosis factor inhibitors is based on bone apposition at the base of the erosion. Ann. Rheum. Dis. 70, 1587 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Lukas, C., Heijde, D., van der, Fatenajad, S. & Landewé, R. Repair of erosions occurs almost exclusively in damaged joints without swelling. Ann. Rheum. Dis. 69, 851 (2010).

    PubMed 

    Google Scholar 

  • Saidenberg-Kermanac’h, N. et al. TNF-α antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone 35, 1200–1207 (2004).

    PubMed 

    Google Scholar 

  • Abtahi, S. et al. Biological disease-modifying antirheumatic drugs and osteoporotic fracture risk in patients with rheumatoid arthritis: a Danish cohort study. Am. J. Med. 135, 879–888.e3 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. Y., Schneeweiss, S., Liu, J. & Solomon, D. H. Effects of disease-modifying antirheumatic drugs on nonvertebral fracture risk in rheumatoid arthritis: a population-based cohort study. J. Bone Miner. Res. 27, 789–796 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Kawai, V. K. et al. Initiation of tumor necrosis factor α antagonists and risk of fractures in patients with selected rheumatic and autoimmune diseases. Arthritis Care Res. 65, 1085–1094 (2013).

    CAS 

    Google Scholar 

  • Coulson, K. A., Reed, G., Gilliam, B. E., Kremer, J. M. & Pepmueller, P. H. Factors influencing fracture risk, T score, and management of osteoporosis in patients with rheumatoid arthritis in the Consortium of Rheumatology Researchers of North America (CORRONA) registry. J. Clin. Rheumatol. 15, 155–160 (2009).

    PubMed 

    Google Scholar 

  • Ozen, G., Pedro, S., Wolfe, F. & Michaud, K. Medications associated with fracture risk in patients with rheumatoid arthritis. Ann. Rheum. Dis. 78, 1041–1047 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Shao, F., Li, H.-C., Wang, M.-J. & Cui, C.-M. Impact of biologic disease-modifying antirheumatic drugs on fracture risk in patients with rheumatoid arthritis: a systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 25, 3416–3424 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Maini, R. N. et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 54, 2817–2829 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371, 987–997 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Wong, P. K. K. et al. Interleukin-6 modulates production of T lymphocyte–derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum. 54, 158–168 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Finzel, S. et al. Comparison of the effects of tocilizumab monotherapy and adalimumab in combination with methotrexate on bone erosion repair in rheumatoid arthritis. Ann. Rheum. Dis. 78, 1186–1191 (2019). This article investigates the effect of cytokine-blockers on bone erosions using high-resolution peripheral quantitative computed tomography.

    CAS 
    PubMed 

    Google Scholar 

  • Nishimoto, N. et al. Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann. Rheum. Dis. 66, 1162 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kremer, J. M. et al. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis Rheum. 63, 609–621 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Garnero, P., Thompson, E., Woodworth, T. & Smolen, J. S. Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum. 62, 33–43 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Karsdal, M. A. et al. IL-6 receptor inhibition positively modulates bone balance in rheumatoid arthritis patients with an inadequate response to anti-tumor necrosis factor therapy: biochemical marker analysis of bone metabolism in the tocilizumab RADIATE Study (NCT00106522). Semin. Arthritis Rheum. 42, 131–139 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Axmann, R. et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 60, 2747–2756 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Kato, A. et al. Early effects of tocilizumab on bone and bone marrow lesions in a collagen-induced arthritis monkey model. Exp. Mol. Pathol. 84, 262–270 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Khayyat, S. G. A. et al. Bone-sparing effects of tocilizumab in rheumatoid arthritis: a monocentric observational study. Reumatologia 60, 326–331 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kume, K. et al. The effect of tocilizumab on bone mineral density in patients with methotrexate-resistant active rheumatoid arthritis. Rheumatology 53, 900–903 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Briot, K. et al. The effect of tocilizumab on bone mineral density, serum levels of Dickkopf-1 and bone remodeling markers in patients with rheumatoid arthritis. Jt Bone Spine 82, 109–115 (2015).

    CAS 

    Google Scholar 

  • Axmann, R. et al. CTLA-4 directly inhibits osteoclast formation. Ann. Rheum. Dis. 67, 1603 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Tada, M. et al. FRI0062 Influence of biologic agents on bone mineral density and bone mineral markers in patients with rheumatoid arthritis: data from the airtight study. Ann. Rheum. Dis. 74, 441–442 (2015).

    Google Scholar 

  • Kremer, J. M. et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 144, 865–876 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Iwamoto, N. et al. Preferable effect of CTLA4-Ig on both bone erosion and bone microarchitecture in rheumatoid arthritis revealed by HR-pQCT. Sci. Rep. 14, 27673 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hein, G. et al. Influence of rituximab on markers of bone remodeling in patients with rheumatoid arthritis: a prospective open-label pilot study. Rheumatol. Int. 31, 269–272 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Boumans, M. J. H. et al. Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann. Rheum. Dis. 71, 108 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Khayyat, S. G. A. et al. Bone-sparing effects of rituximab and body composition analysis in a cohort of postmenopausal women affected by rheumatoid arthritis – retrospective study. Reumatologia 59, 206–210 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zerbini, C. A. & Lomonte, A. B. V. Tofacitinib for the treatment of rheumatoid arthritis. Expert Rev. Clin. Immunol. 8, 319–331 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Conaghan, P. G. et al. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques. Ann. Rheum. Dis. 75, 1024 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, E. B. et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370, 2377–2386 (2014).

    PubMed 

    Google Scholar 

  • Kremer, J. et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 159, 253–261 (2013).

    PubMed 

    Google Scholar 

  • LaBranche, T. P. et al. JAK inhibition with tofacitinib suppresses arthritic joint structural damage through decreased RANKL production. Arthritis Rheum. 64, 3531–3542 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Hamar, A. et al. Effects of one-year tofacitinib therapy on bone metabolism in rheumatoid arthritis. Osteoporos. Int. 32, 1621–1629 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, K. E. et al. Fracture in clinical studies of tofacitinib in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 14, 1759720×221142346 (2022).

    PubMed Central 

    Google Scholar 

  • Gómez-Vaquero, C. et al. High incidence of clinical fragility fractures in postmenopausal women with rheumatoid arthritis. A case-control study. Bone 168, 116654 (2023).

    PubMed 

    Google Scholar 

  • Fujieda, Y. et al. Efficacy and safety of sodium RISedronate for glucocorticoid-induced OsTeoporosis with rheumaTOid arthritis (RISOTTO study): a multicentre, double-blind, randomized, placebo-controlled trial. Mod. Rheumatol. 31, 593–599 (2020).

    PubMed 

    Google Scholar 

  • Kumagai, K. et al. Effects of once-monthly minodronate versus risedronate in osteoporosis patients with rheumatoid arthritis: a 12-month randomized head-to-head comparison. Osteoporos. Int. 29, 1637–1642 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Eggelmeijer, F. et al. Increased bone mass with pamidronate treatment in rheumatoid arthritis. Results of a three-year randomized, double-blind trial. Arthritis Rheum. 39, 396–402 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Lems, W. F. et al. Positive effect of alendronate on bone mineral density and markers of bone turnover in patients with rheumatoid arthritis on chronic treatment with low-dose prednisone: a randomized, double-blind, placebo-controlled trial. Osteoporos. Int. 17, 716–723 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Mawatari, T. et al. Vertebral strength changes in rheumatoid arthritis patients treated with alendronate, as assessed by finite element analysis of clinical computed tomography scans: a prospective randomized clinical trial. Arthritis Rheum. 58, 3340–3349 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Katayama, K. & Matsuno, T. Effects of bisphosphonates on fracture incidence and bone metabolism in rheumatoid arthritis patients in general practice taking long-term corticosteroid therapy. Clin. Drug Investig. 28, 149–158 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Jarrett, S. J. et al. Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis. Arthritis Rheum. 54, 1410–1414 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Xie, J. et al. Zoledronic acid ameliorates the effects of secondary osteoporosis in rheumatoid arthritis patients. J. Orthop. Surg. Res. 14, 421 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sansoni, P. et al. Inhibition of antigen-presenting cell function by alendronate in vitro. J. Bone Miner. Res. 10, 1719–1725 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • D’Amelio, P. et al. Risedronate reduces osteoclast precursors and cytokine production in postmenopausal osteoporotic women. J. Bone Miner. Res. 23, 373–379 (2009).

    Google Scholar 

  • Sharp, J. T. et al. Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care Res. 62, 537–544 (2010).

    Google Scholar 

  • Deodhar, A. et al. Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res. 62, 569–574 (2010).

    CAS 

    Google Scholar 

  • Dore, R. K. et al. Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann. Rheum. Dis. 69, 872–875 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Ferrari-Lacraz, S. & Ferrari, S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos. Int. 22, 435–446 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Curtis, J. R. et al. Risk of hospitalized infection among rheumatoid arthritis patients concurrently treated with a biologic agent and denosumab. Arthritis Rheumatol. 67, 1456–1464 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Takeuchi, T. et al. Effects of the anti-RANKL antibody denosumab on joint structural damage in patients with rheumatoid arthritis treated with conventional synthetic disease-modifying antirheumatic drugs (DESIRABLE study): a randomised, double-blind, placebo-controlled phase 3 trial. Ann. Rheum. Dis. 78, 899–907 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Neer, R. M. et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Langdahl, B. L. et al. Real-world effectiveness of teriparatide on fracture reduction in patients with osteoporosis and comorbidities or risk factors for fractures: Integrated analysis of 4 prospective observational studies. Bone 116, 58–66 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Ebina, K. et al. Assessment of the effects of switching oral bisphosphonates to denosumab or daily teriparatide in patients with rheumatoid arthritis. J. Bone Miner. Metab. 36, 478–487 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Solomon, D. H. et al. Effects of teriparatide on joint erosions in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol. 69, 1741–1750 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sleeman, A. & Clements, J. N. Abaloparatide: a new pharmacological option for osteoporosis. Am. J. Health Syst. Pharm. 76, 130–135 (2019).

    PubMed 

    Google Scholar 

  • McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Saag, K. G. et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377, 1417–1427 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ebina, K. et al. An investigation of the differential therapeutic effects of romosozumab on postmenopausal osteoporosis patients with or without rheumatoid arthritis complications: a case–control study. Osteoporos. Int. 35, 841–849 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobayakawa, T. et al. Comparable efficacy of denosumab and romosozumab in patients with rheumatoid arthritis receiving glucocorticoid administration. Mod. Rheumatol. 33, 96–103 (2022).

    Google Scholar 

  • Mochizuki, T., Yano, K., Ikari, K., Hiroshima, R. & Okazaki, K. Comparison of romosozumab versus denosumab treatment on bone mineral density after 1 year in rheumatoid arthritis patients with severe osteoporosis: a randomized clinical pilot study. Mod. Rheumatol. 33, 490–495 (2022).

    Google Scholar 

  • Mok, C. C. et al. Romosozumab versus denosumab in long-term users of glucocorticoids: a pilot randomized controlled trial. J. Intern. Med. 296, 481–494 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Gordon, D. et al. Selective inhibition of the MK2 pathway: data from a phase IIa randomized clinical trial in rheumatoid arthritis. ACR Open Rheumatol. 5, 63–70 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wehmeyer, C. et al. Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction. Sci. Transl. Med. 8, 330ra35 (2016).

    PubMed 

    Google Scholar 

  • Chen, Y. et al. A selected small molecule prevents inflammatory osteolysis through restraining osteoclastogenesis by modulating PTEN activity. Clin. Transl. Med. 10, e240 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manda, G. et al. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Radic. Biol. Med. 190, 179–201 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Chery, J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J. 4, 35–50 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasegawa, T. et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat. Immunol. 20, 1631–1643 (2019). This article describes the occurrence of arthritis-associated osteoclast precursors in mice.

    CAS 
    PubMed 

    Google Scholar 

  • Yamaguchi, Y. et al. Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation. J. Cell. Mol. Med. 22, 1138–1147 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Cao, S. et al. L-arginine metabolism inhibits arthritis and inflammatory bone loss. Ann. Rheum. Dis. 83, 72–87 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments